Czasopismo
Tytuł artykułu
Warianty tytułu
Właściwości popiołów lotnych pochodzących ze spalania węgla w powietrzu i w atmosferze wzbogaconej w tlen w instalacji pilotowej Oxy-Fuel CFB 0,1 MW
Języki publikacji
Abstrakty
Presented are results of investigations on physical and chemical properties of fly ash. The fly ash samples derive from the combustion of hard coal in a pilot-scale laboratory 0,1 MWe boiler with circulating fluidized bed (CFB). Selected were ashes derived from combustion in three types of atmospheres: conventional air atmosphere (N2/O2 – 79%:21%), atmosphere with nitrogen replaced by carbon dioxide (CO2/O2 – 79%:21%) and oxygen enriched atmosphere (CO2/O2 – 75%:25%). Investigated was chemical composition of the obtained ashes and the content of the following elements: C, H, S, N, Al, Si, Ca, Fe, Mg, P, K, Mn, Na and Ti was determined. Carried out were also investigations concerning several more physical properties such as thermogravimetrical analysis (TGA) of decomposition, surface properties (average pore volume, micropore volume, BET and Langmuir surface areas) and particle-size distributions. In addition, determined was the loss on ignition (LOI) as well as an analysis of spectra obtained by infrared spectroscopy (FTIR) was carried out.
Przedstawiono wyniki badań właściwości fizykochemicznych popiołów lotnych. Próbki popiołów pochodziły ze spalania węgla kamiennego w pilotowym laboratoryjnym kotle z cyrkulacyjną warstwą fluidalną (CFB) o mocy 0,1 MW. Wybrano popioły ze spalania w konwencjonalnej atmosferze powietrznej (N2/O2 – 79%: 21%), atmosferze z azotem wymienionym na ditlenek węgla (CO2/O2 – 79%:21%) oraz atmosferze wzbogaconej w tlen (CO2/O2 – 75%:25%). Otrzymane popioły lotne zostały zanalizowane pod kątem składów chemicznych – zawartości pierwiastków: C, H, S, N, Al, Si, Ca, Fe, Mg, P, K, Mn, Na, Ti. Przeprowadzone zostały również badania rozkładów termicznych (TGA), właściwości powierzchniowych (średnie objętości porów, objętości mikroporów, powierzchnie właściwe BET i Langmuira) oraz rozkłady uziarnienia. Ponadto oznaczono straty prażenia (LOI) oraz zanalizowano widma spektroskopii w podczerwieni (FTIR).
Czasopismo
Rocznik
Tom
Strony
821--826
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Politechnika Częstochowska, Wydział Inżynierii Środowiska i Biotechnologii, jbieniek@fluid.is.pcz.pl
autor
- Politechnika Częstochowska, Wydział Inżynierii Środowiska i Biotechnologii
autor
- Politechnika Częstochowska, Wydział Inżynierii Środowiska i Biotechnologii
Bibliografia
- [1] Majchrzak-Kucęba I., W. Nowak, Characterization of MCM-41 mesoporous materials derived from polish fly ashes, International Journal of Mineral Processing 2011(101), 100-111.
- [2] Mohan S., Gandhimathi R., Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent, Jounal of Hazardous Materials 169 (2009), 351-359.
- [3] Mohan S., Gandhimathi R., Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent, Jounal of Hazardous Materials 2009(169), 351-359.
- [4] Yu D., Morris W.J., Erickson R., Wendt J.O.L., Fry A., Senior C.L., Ash and deposit formation from oxy-coal combustion in a 100 kW test furnace, International Journal of Greenhouse Gas Control 5S (2011) 159-167.
- [5] Fryda L., Sobrino C., Cieplik M., van de Kamp W.L., Study on ash deposition under oxyfuel combustion of coal/biomass blends, Fuel 2010(89) 1889-1902.
- [6] Ahn J., Okerlund R., Fry A., Eddings E.G., Sulfur trioxide formation during oxy-coal combustion, International Journal of Greenhouse Gas Control 5S (2011) 127-135.
- [7] Stanger R., Wall T., Sulphur impacts during pulverized coal combustion in oxy-fuel technology for carbon capture and storage, Progress in Energy and Combustion Science 2011(37) 69-88.
- [8] Morris W.J., Yu D., J.O.L. Wendt, A comparison of soot, fine particle and sodium emissions for air-and oxy-coal flames, with recycled flue gases of various compositions Proc. Combust. Inst. (2012).
- [9] Scheffknecht G., Al-Makhadmeh L., Schnell U., Maier J., Oxy-fuel coal combustion – A review of the current state-of-the-art, International Journal of Greenhouse Gas Control 5S (2011), 16-35.
- [10] Toftegaard M.B., Brix J., Jensen P.A., Glarborg P., Jensen A.D., Oxy-fuel combustion of solid fuels, Progress in Energy and Combustion Science 2010(36), 581-625.
- [11] Chen L., Yong S.Z., Ghoniem A.F., Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling, Progress in Energy and Combustion Science 2012(38), 156-214.
- [12] Kanniche M., Gros-Bonnivard R., Jaud P., Valle-Marcos J., Amann J.M., C. Bouallou, Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture, Applied Thermal Engineering 2010(30), 53-62.
- [13] Liu H., Okazaki K., Simultaneous easy CO2 recovery and drastic reduction of SOx and NOx in O2/CO2 coal combustion with heat recirculation, Fuel 2003(82), 1427-1436.
- [14] Karayigit A.I., Gayer R.A., Characterisation of fly ash from the Kangal power plant, Eastern Turkey, 2001 International Ash utilization Symposium, Center of Applied Energy Research, University of Kentucky, Paper #4, http://www.flyash.info
- [15] Nathan Y., Dvorachek M., Pelly I., Mimran U., Characterization of coal fly ash from Israel, Fuel 1999(78), 205-213.
- [16] Moreno N., Querol X., Andrés J.M., Stanton K., Towler M., Nugteren H., Janssen-Jurkovicová M., Jones R., Physico-chemical characteristics of European pulverized coal combustion fly ashes, Fuel 2005(84), 1351-1363.
- [17] Ward C.R., French D., Determination of glass content and estimation of glass composition in fly ash using quantitative X-ray diffractometry, Fuel 2006(85), 2268-2277.
- [18] Koukouzas N., Hämäläinen J., Papanikolaou D., Tourunen A., Jäntti T., Mineralogical and elemental composition of fly ash from pilot scale fluidised bed combustion of lignite, bituminous coal, wood chips and their blends, Fuel 2007(86), 2186-2193.
- [19] Kutchko B.G., Kim A.G., Fly ash characterization by SEM–EDS, Fuel 2006(85), 2537-2544.
- [20] Matsunaga T., Kim J.K., Hardcastle S., Rohatgi P.K., Crystallinity and selected properties of fly ash particles, Materials Science and Engineering A325 (2002), 333-343.
- [21] Smołka-Danielowska D., Heavy metals in fly ash from coal-fired power station in Poland, Polish Journal of Environmental Studies 2006(15), nr 6, 943-946.
- [22] Koukouzas N., Ketikidis C., Itskos G., Heavy metal characterization of CFB-derived coal fly ash, Fuel Processing Technology 2011(92), 441-446.
- [23] Martinez-Tarazona M.R., Spears D.A, The fate of trace elements and bulk minerals in pulverized coal combustion in a power station, Fuel Processing Technology 1996(47), 79-92.
- [24] Vincze L., Somogyi A., Osán J., Vekemans B., Török S., Janssens K., and Adams F., Quantitative Trace Element Analysis of Individual Fly Ash Particles by Means of X-ray Microfluorescence, Anal. Chem. 2002, 74, 1128-1135.
- [25] Zhang L. et al., Oxy-fuel combustion ash formation mechanisms, in Biggs, M.J. (ed), Chemeca 2010, Sep 26 2010, pp. 1-2. Adelaide, SA: ICMS Pty Ltd.
- [26] Jiao F., Chen J., Zhang L., Wei Y., Ninomiya Y., Bhattacharya S., Yao H., Ash partitioning during the oxy–fuel combustion of lignite and its dependence on the recirculation of flue gas impurities (H2O, HCl and SO2), Fuel 2011(90), 2207-2216.
- [27] Font O., Córdoba P., Leiva C., Romeo L.M., Bolea I., Guedea I., Moreno N., Querol X., Fernandez C., Díez L.I., Fate and abatement of mercury and other trace elements in a coal fluidised bed oxy combustion pilot plant, Fuel 2012(95), 272-281.
- [28] Z. Bis, T. Czakiert, Fluidalne spalanie węgla w atmosferze wzbogaconej tlenem, Polityka Energetyczna 2006(9), 329-342.
- [29] Paya J., Monzo J., Borrachero M.V., Perris E., Amahjour F., Thermogravimetric methods for determining carbon content in fly ashes, Cement and Concrete Research 1998(28), No. 5, 675-686.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8cc69a99-d918-4840-9efc-4653ee3ea218