Warianty tytułu
Języki publikacji
Abstrakty
This work is devoted to determining the effect of mesh density and mesh type on cavitation cloud volume generated during the flow of water through the cavitation tunnel. The numerical analysis was carried out on a water model based on a cavitation tunnel located at the Institute of Water Problems of the Bulgarian Academy of Sciences in Sofia, used to test the resistance of construction materials to cavitation erosion. A numerical analysis is performed for four different types of grids: polyhedra, poly-hexcore, hexcore, and tetrahedral. These grids have five different maximum cell sizes: 0.0025, 0.0020, 0.0015, 0.0010, and 0.0005 m. A numerical analysis is performed using commercial CFD software ‒ i.e., Ansys Fluent 2023 R1. The Schnerr and Sauer cavitation model and the k-omega viscous model for shear stress transport (SST) are used. This paper analyzes the qualitative parameters of the quality of the grid, distribution of velocity, pressure, average cell volume, and volume of cavitation cloud consisting of 90% volume vapor fraction. Based on the numerical analyses, it is shown that the basis for obtaining accurate results of the CFD simulations is not only the qualitative parameters of the grid but also its density.
Rocznik
Tom
Strony
23--31
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Maritime University of Szczecin, Department of Machine Construction and Materials 2-4 Willowa St., 71-650 Szczecin, Poland, r.jasionowski@pm.szczecin.pl
autor
- Maritime University of Szczecin, Department of Machine Construction and Materials 2-4 Willowa St., 71-650 Szczecin, Poland, w.kostrzewa@pm.szczecin.pl
Bibliografia
- 1. Ansys (2024) Ansys Fluent User’s Guide Release 2024 R1. Ansys Inc., Canonsburg, USA.
- 2. Brennen, C.E. (1995) Cavitation and Bubble Dynamics. Oxford University Press, Oxford, New York.
- 3. Franc, J.P. & Michel, J.M. (2004) Fundamentals of Cavitation. Kluwer Academic Publishers, Kluwer.
- 4. Hu, Q., Yang, Y. & Cao, W. (2020) Computational analysis of cavitation at the tongue of the volute of a centrifugal pump at overload conditions. Advances in Production Engineering & Management 15 (3), pp. 295–306, doi: 10.14743/ apem2020.3.366.
- 5. Hu, Q.X., Yang, Y. & Shi, W.D. (2020) Cavitation simulation of a centrifugal pump with different inlet attack angles. International Journal of Simulation Modelling 19 (2), pp. 279–290, doi: 10.2507/IJSIMM19-2-516.
- 6. Jasionowski, R. & Kostrzewa, W. (2018) Optimization of geometry of cavitational tunnel using CFD method. In: Awrejcewicz, J. (ed.) Dynamical Systems in Applications. DSTA 2017. Springer Proceedings in Mathematics & Statistics, vol 249, Springer, Cham, pp. 181–192, doi: 10.1007/978-3-319-96601-4_17.
- 7. Jasionowski, R. & Kostrzewa, W. (2023) Numerical analysis of the volume of cavitation cloud in a cavitation tunnel using multiphase computational fluid dynamics simulations. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Politechniki Morskiej w Szczecinie 76 (148), pp. 48–56, doi: 10.17402/585.
- 8. Jasionowski, R., Polkowski, W. & Zasada, D. (2018) Effect of crystalographic texture on cavitation wear resistance of as-cast CuZn10 alloy. Archives of Metallurgy and Materials 63 (2), pp. 935–940, doi:10.24425/122425.
- 9. Johnsen, E. & Colonius, T. (2009) Numerical simulations of non-spherical bubble collapse. Journal of Fluid Mechanics 629, pp. 231–262, doi: 10.1017/S0022112009006351.
- 10. Lauer, E., Hu, X.Y., Hickel, S. & Adams, N.A. (2012) Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics. Computers & Fluids 69, pp. 1–19, doi: 10.1016/j.compfluid.2012.07.020.
- 11. Lin, C., Zhao, Q., Zhao, X. & Yang, Y. (2018) Cavitation erosion of metallic materials. International Journal of Georesources and Environment 4 (1), pp. 1–8, doi: 10.15273/ ijge.2018.01.001.
- 12. Liseikin, W D. (1999) Grid Generation Methods. Springer-Verlag.
- 13. Liu, H.L., Wang, J., Wang, Y., Zhang, H. & Huang, H. (2014) Influence of the empirical coefficients of cavitation model on predicting cavitating flow in the centrifugal pump. International Journal of Naval Architecture and Ocean Engineering 6 (1), pp. 119–131, doi: 10.2478/ IJNAOE-2013-0167.
- 14. Müller, S., Helluy, P. & Ballmann, J. (2010) Numerical simulation of a single bubble by compressible two-phase fluids. Numerical Methods in Fluids 62 (6), pp. 591–631, doi: 10.1002/d.2033.
- 15. Muttalli, R.S., Agrawal, S. & Warudkar, H. (2014) CFD simulation of centrifugal pump impeller using ANSYS-CFX. International Journal of Innovative Research in Science Engineering and Technology 03 (08), pp. 15553– 15561, doi: 10.15680/ijirset.2014.0308066.
- 16. Naudé, C.F. & Ellis, A.T. (1961) On the mechanism of cavitation damage by nonhemispherical cavities collapsing in contact with a solid boundary. Journal of Basic Engineering 83 (4) pp. 648–656, doi: 10.1115/1.3662286.
- 17. Peyret, R. (1996) Handbook of Computational Fluid Mechanics. Academic Press.
- 18. Plesset, M.S. (1949) The dynamics of cavitation bubbles. ASME Journal of Applied Mechanics 16 (3), pp. 277‒282, doi: 10.1115/1.4009975.
- 19. Plesset, M.S. & Chapman, R.B. (1971) Collapse of an initially spherical vapor cavity in the neighborhood of solid boundary. Journal of Fluid Mechanics 47 (2), pp. 283‒290, doi: 10.1017/S0022112071001058.
- 20. Rasthofer, U., Wermelinger, F., Hadijdoukas, P. & Koumoutsakos, P. (2017) Large scale simulation of cloud cavitation collapse. Procedia Computer Science 108, pp. 1763–177, doi: 10.1016/j.procs.2017.05.158.
- 21. Sánchez Ocaña, W., Carvajal, C., Poalacín, J., Pazmiño, M.I., Jácome, E.S. & Basantes, L. (2018) Cavitation analysis with CFD techniques of the impeller of a centrifugal pump. Indian Journal of Science and Technology 11 (22), pp. 1–6, doi: 10.17485/ijst/2018/v11i20/123055.
- 22. Steller, J. & Gireń, B.G. (2015) International cavitation erosion test. Final report. Zeszyty Naukowe Instytutu Maszyn Przepływowych Polskiej Akademii Nauk w Gdańsku, Studia i Materiały, 560/1519/2015, doi: 10.13140/ RG.2.1.4330.8883.
- 23. Szala, M. & Łukasik, D. (2016) Cavitation wear of pump impellers. Journal of Technology and Exploitation in Mechanical Engineering 2, pp. 40‒44, doi: 10.35784/jteme.337.
- 24. Thompson, J.F., Warsi, Z.U.A. & Mastin, C.W. (1985) Numerical Grid Generation. Foundations and Applications, North Holland.
- 25. Tiwari, A., Pantano, C. & Freund, J.B. (2015) Growthand-collapse dynamics of small bubble clusters near a wall. Journal of Fluid Mechanics 775, pp. 1–23, doi: 10.1017/ jfm.2015.287.
- 26. Young, F.R. (1999) Cavitation. Imperial College Press, London.
- 27. Zakrzewska, D.E. & Krella, A.K. (2019) Cavitation erosion resistance influence of material properties. Advances in Materials Science 19 (4), pp. 18–34, doi: 10.2478/adms2019-0019.
- 28. Zasada, D., Sienkiewicz, J.A. & Jasionowski, R. (2015) Grain size influences the corrosion and cavitation of Ni3Al intermetallic alloys. Metalurgija 54, pp. 47–50.
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.baztech-8bfa5430-26d8-4aa8-a421-49756df8261a