Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 3 | 282--290
Tytuł artykułu

Effects of Different Biochar Types on the Growth and Functional Traits of Rice (Oryza sativa L.)

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biochar’s impact on plant growth is complex, varying with type and application rate. This study explored how four biochars (rice husk, cocoa shell, peanut shell, carob) affect rice (Oryza sativa L.) at five rates (0–5%). Biochar significantly enhanced rice growth, but the optimal type and rate varied. Total dry mass increased by an average of 20% in biochar-treated groups compared to controls, with rice husk and cocoa shell biochar at 5% application rate achieving the highest yields. The effects on plant components differed. While leaf mass fraction responded favorably to all biochar types, stem and root mass fractions remained largely unchanged. Additionally, root strength, as measured by root dry matter content, increased with all biochars, particularly rice husk biochar which boosted it by 8%. All biochar types also enhanced leaf mass per area, a key indicator of photosynthetic efficiency. These findings highlight the importance of tailoring biochar application strategies to specific crops and soil conditions. Optimizing biochar application based on its influence on root strength, leaf mass allocation, and growth across different crop species and soil conditions can unlock its full potential for sustainable development.
Wydawca

Rocznik
Strony
282--290
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Carrera de Ingeniería Agrícola. Escuela Superior Politécnica Agropecuaria de Manabi Manuel Félix López, Campus Politécnico El Limón, vía Calceta-El Morro, Ecuador, acedeno@espam.edu.ec
  • Área de Ecología, Facultad de Ciencias, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
autor
  • Área de Ecología, Facultad de Ciencias, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain, maolmop@gmail.com
  • Carrera de Ingeniería Agrícola. Escuela Superior Politécnica Agropecuaria de Manabi Manuel Félix López, Campus Politécnico El Limón, vía Calceta-El Morro, Ecuador, gcedeno@espam.edu.ec
  • Carrera de Ingeniería Agrícola. Escuela Superior Politécnica Agropecuaria de Manabi Manuel Félix López, Campus Politécnico El Limón, vía Calceta-El Morro, Ecuador, marilucas84@hotmail.com
  • Carrera de Ingeniería Agrícola. Escuela Superior Politécnica Agropecuaria de Manabi Manuel Félix López, Campus Politécnico El Limón, vía Calceta-El Morro, Ecuador, veris.saldarriaga@espam.edu.ec
  • Área de Ecología, Facultad de Ciencias, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain, bv1vimor@uco.es
Bibliografia
  • 1. Abrishamkesh, S., Gorji, M., Asadi, H., BagheriMarandi, G.H., & Pourbabaee, A.A. 2015. Effects of rice husk biochar application on the properties of alkaline soil and lentil growth. Plant, Soil and Environment, 61(11), 475-482. https://doi. org/10.17221/117/2015-PSE
  • 2. Adebajo, S.O., Oluwatobi, F., Akintokun, P.O., Ojo, A.E., Akintokun, A.K., & Gbodope, I. S. 2022. Impacts of rice-husk biochar on soil microbial biomass and agronomic performances of tomato (Solanum lycopersicum L.). Scientific Reports, 12(1), 1787. https://doi.org/10.1038/s41598-022-05757-z
  • 3. Alburquerque, J.A., Calero, J.M., Barrón, V., Torrent, J., Del Campillo, M.C., Gallardo, A., & Villar, R. 2014. Effects of biochars produced from different feedstocks on soil properties and sunflower growth. Journal of Plant Nutrition and Soil Science, 177(1), 16-25. https://doi.org/10.1002/jpln.201200652
  • 4. Ali, L., Xiukang, W., Naveed, M., Ashraf, S., Nadeem, S.M., Haider, F.U., & Mustafa, A. 2021. Impact of Biochar Application on Germination Behavior and Early Growth of Maize Seedlings: Insights from a Growth Room Experiment. Applied Sciences, 11(24), 11666. https://doi.org/10.3390/app112411666
  • 5. Ariani, R., Nurida, N.L., & Dariah, A. 2021. Utilization of cacao shell biochar and compost to improve cayenne pepper (Capsicum frutescens L.) in acid upland. IOP Conference Series: Earth and Environmental Science, 648(1), 012182. https://doi. org/10.1088/1755-1315/648/1/012182
  • 6. Asadi, H., Ghorbani, M., Rezaei-Rashti, M., Abrishamkesh, S., Amirahmadi, E., Chengrong, C., & Gorji, M. 2021. Application of Rice Husk Biochar for Achieving Sustainable Agriculture and Environment. Rice Science, 28(4), 325-343. https:// doi.org/10.1016/j.rsci.2021.05.004
  • 7. Cornelissen, G., Jubaedah, Nurida, N.L., Hale, S.E., Martinsen, V., Silvani, L., & Mulder, J. 2018. Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol. Science of The Total Environment, 634, 561568. https://doi.org/10.1016/j.scitotenv.2018.03.380
  • 8. de la Riva, E.G., Olmo, M., Poorter, H., Ubera, J.L., & Villar, R. 2016. Leaf Mass per Area (LMA) and Its Relationship with Leaf Structure and Anatomy in 34 Mediterranean Woody Species along a Water Availability Gradient. PLOS ONE, 11(2), e0148788. https://doi.org/10.1371/journal.pone.0148788
  • 9. Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., & Zheng, B. 2016. Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 36(2), 36. https://doi.org/10.1007/ s13593-016-0372-z
  • 10. Dominchin, M.F., Verdenelli, R.A., Berger, M.G., Aoki, A., & Meriles, J.M. 2021. Impact of N-fertilization and peanut shell biochar on soil microbial community structure and enzyme activities in a Typic Haplustoll under different management practices. European Journal of Soil Biology, 104, 103298. https://doi.org/10.1016/j.ejsobi.2021.103298
  • 11. Farrar, M.B., Wallace, H.M., Xu, C.-Y., Joseph, S., Dunn, P.K., Nguyen, T.T.N., & Bai, S.H. 2021. Biochar co-applied with organic amendments increased soil-plant potassium and root biomass but not crop yield. Journal of Soils and Sediments, 21(2), 784798. https://doi.org/10.1007/s11368-020-02846-2
  • 12. Gamage, D.N.V., Mapa, R.B., Dharmakeerthi, R.S., & Biswas, A. 2016. Effect of rice-husk biochar on selected soil properties in tropical Alfisols. Soil Research, 54(3), 302. https://doi.org/10.1071/SR15102
  • 13. Garnier, E., Shipley, B., Roumet, C., & Laurent, G. 2001. A standardized protocol for the determination of specific leaf area and leaf dry matter content: Protocol for the determination of leaf traits. Functional Ecology, 15(5), 688-695. https://doi. org/10.1046/j.0269-8463.2001.00563.x
  • 14. Hagemann, N., Joseph, S., Schmidt, H.-P., Kammann, C.I., Harter, J., Borch, T., Young, R. B., Varga, K., Taherymoosavi, S., Elliott, K.W., McKenna, A., Albu, M., Mayrhofer, C., Obst, M., Conte, P., Dieguez-Alonso, A., Orsetti, S., Subdiaga, E., Behrens, S., & Kappler, A. 2017. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nature Communications, 8(1), 1089. https://doi.org/10.1038/s41467-017-01123-0
  • 15. Hodgson, J. G., Montserrat-Martí, G., Charles, M., Jones, G., Wilson, P., Shipley, B., Sharafi, M., Cerabolini, B.E.L., Cornelissen, J.H.C., Band, S R., Bogard, A., Castro-Díez, P., Guerrero-Campo, J., Palmer, C., Pérez-Rontomé, M.C., Carter, G., Hynd, A., RomoDíez, A., de Torres Espuny, L., & Royo Pla, F. 2011. Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Annals of Botany, 108(7), 1337-1345. https://doi.org/10.1093/aob/mcr225
  • 16. Hussain, R., & Ravi, K. 2022. Investigating soil properties and vegetation parameters in different biochar-amended vegetated soil at large suction for application in bioengineered structures. Scientific Reports, 12(1), 21261. https://doi.org/10.1038/ s41598-022-22149-5
  • 17. Jatav, H.S., Rajput, V.D., Minkina, T., Singh, S.K., Chejara, S., Gorovtsov, A., Barakhov, A., Bauer, T., Sushkova, S., Mandzhieva, S., Burachevskaya, M., & Kalinitchenko, V. P. 2021. Sustainable Approach and Safe Use of Biochar and Its Possible Consequences. Sustainability, 13(18), 10362. https://doi. org/10.3390/su131810362
  • 18. Jeffery, S., Verheijen, F.G.A., Van Der Velde, M., & Bastos, A.C. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment, 144(1), 175-187. https://doi. org/10.1016/j.agee.2011.08.015
  • 19. Kleyer, M., Trinogga, J., Cebrián-Piqueras, M.A., Trenkamp, A., Fløjgaard, C., Ejrnaes, R., Bouma, T.J., Minden, V., Maier, M., Mantilla-Contreras, J., Albach, D.C., & Blasius, B. 2019. Trait correlation network analysis identifies biomass allocation traits and stem specific length as hub traits in herbaceous perennial plants. Journal of Ecology, 107(2), 829842. https://doi.org/10.1111/1365-2745.13066
  • 20. Kumar, A., Bhattacharya, T., Shaikh, W.A., Roy, A., Chakraborty, S., Vithanage, M., & Biswas, J.K. 2023. Multifaceted applications of biochar in environmental management: A bibliometric profile. Biochar, 5(1), 11. https://doi.org/10.1007/s42773-023-00207-z
  • 21. Lehmann, J., Cowie, A., Masiello, C.A., Kammann, C., Woolf, D., Amonette, J.E., Cayuela, M.L., CampsArbestain, M., & Whitman, T. 2021. Biochar in climate change mitigation. Nature Geoscience, 14(12), 883892. https://doi.org/10.1038/s41561-021-00852-8
  • 22. Lehmann, J., & Joseph, S. (Eds.). 2015. Biochar for environmental management: science, technology and implementation. Published by Routledge.
  • 23. Liu, X., Wei, Z., Ma, Y., Liu, J., & Liu, F. 2021. Effects of biochar amendment and reduced irrigation on growth, physiology, water-use efficiency, and nutrients uptake of tobacco (Nicotiana tabacum L.) on two different soil types. Science of The Total Environment, 770, 144769. https://doi.org/10.1016/j. scitotenv.2020.144769
  • 24. Liu, Y., Lu, H., Yang, S., & Wang, Y. 2016. Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons. Field Crops Research, 191, 161-167. https://doi. org/10.1016/j.fcr.2016.03.003
  • 25. Malhi, G.S., Kaur, M., & Kaushik, P. 2021. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability, 13(3), 1318. https://doi.org/10.3390/su13031318
  • 26. Mansoor, S., Kour, N., Manhas, S., Zahid, S., Wani, O.A., Sharma, V., Wijaya, L., Alyemeni, M.N., Alsahli, A.A., El-Serehy, H.A., Paray, B.A., & Ahmad, P. 2021. Biochar as a tool for effective management of drought and heavy metal toxicity. Chemosphere, 271, 129458. https://doi.org/10.1016/j.chemosphere.2020.129458
  • 27. Mason, N.W.H., De Bello, F., Doležal, J., & Lepš, J. 2011. Niche overlap reveals the effects of competition, disturbance and contrasting assembly processes in experimental grassland communities: Grassland community assembly processes. Journal of Ecology, 99(3), 788-796. https://doi. org/10.1111/j.1365-2745.2011.01801.x
  • 28. Mohan, D., Abhishek, K., Sarswat, A., Patel, M., Singh, P., & Pittman, C U. 2018. Biochar production and applications in soil fertility and carbon sequestration – a sustainable solution to crop-residue burning in India. RSC Advances, 8(1), 508-520. https:// doi.org/10.1039/C7RA10353K
  • 29. Niu, Z., Ma, J., Fang, X., Xue, Z., & Ye, Z. 2022. Effects of application of rice husk biochar and limestone on cadmium accumulation in wheat under glasshouse and field conditions. Scientific Reports, 12(1), 21929. https://doi.org/10.1038/s41598-022-25927-3
  • 30. Olmo, M., Villar, R., Salazar, P., & Alburquerque, J.A. 2016. Changes in soil nutrient availability explain biochar’s impact on wheat root development. Plant and Soil, 399(1), 333-343. https://doi. org/10.1007/s11104-015-2700-5
  • 31. Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M.S., Cornwell, W.K., Craine, J.M., Gurvich, D.E., Urcelay, C., Veneklaas, E.J., Reich, P.B., Poorter, L., Wright, I.J., Ray, P., Enrico, L., Pausas, J.G., de Vos, A.C., Cornelissen, J.H. C. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3), 167. https://doi.org/10.1071/BT12225
  • 32. Phillips, C.L., Meyer, K.M., Garcia-Jaramillo, M., Weidman, C.S., Stewart, C E., Wanzek, T., Grusak, M.A., Watts, D.W., Novak, J., & Trippe, K.M. 2022. Towards predicting biochar impacts on plant-available soil nitrogen content. Biochar, 4(1), 9. https:// doi.org/10.1007/s42773-022-00137-2
  • 33. Poorter, H., Niklas, K.J., Reich, P.B., Oleksyn, J., Poot, P., & Mommer, L. 2012. Biomass allocation to leaves, stems and roots: Meta‐analyses of interspecific variation and environmental control. New Phytologist, 193(1), 30-50. https://doi. org/10.1111/j.1469-8137.2011.03952.x
  • 34. Puglielli, G., Crescente, M.F., Frattaroli, A.R., & Gratani, L. 2015. Leaf mass per area (LMA) as a possible predictor of adaptive strategies in two species of sesleria (Poaceae): analysis of morphological, anatomical and physiological leaf traits. Annales Botanici Fennici, 52(1-2), 135-143. https:// doi.org/10.5735/085.052.0201
  • 35. Shipley, B., & Vu, T.-T. 2002. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytologist, 153(2), 359-364. https://doi.org/10.1046/j.0028-646X.2001.00320.x
  • 36. Singh, E., Mishra, R., Kumar, A., Shukla, S.K., Lo, S.-L., & Kumar, S. 2022. Circular economy-based environmental management using biochar: Driving towards sustainability. Process Safety and Environmental Protection, 163, 585-600. https://doi. org/10.1016/j.psep.2022.05.056
  • 37. Singh Karam, D., Nagabovanalli, P., Sundara Rajoo, K., Fauziah Ishak, C., Abdu, A., Rosli, Z., Melissa Muharam, F., & Zulperi, D. 2022. An overview on the preparation of rice husk biochar, factors affecting its properties, and its agriculture application. Journal of the Saudi Society of Agricultural Sciences, 21(3), 149-159. https://doi.org/10.1016/j.jssas.2021.07.005
  • 38. Sohi, S.P., Krull, E., Lopez-Capel, E., & Bol, R. 2010. A Review of Biochar and Its Use and Function in Soil. En Advances in Agronomy (Vol. 105, pp. 47-82). Elsevier. https://doi.org/10.1016/ S0065-2113(10)05002-9
  • 39. Wu, M., Feng, Q., Sun, X., Wang, H., Gielen, G., & Wu, W. 2015. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil. Scientific Reports, 5(1), 10001. https://doi.org/10.1038/srep10001
  • 40. Xiang, Y., Deng, Q., Duan, H., & Guo, Y. 2017. Effects of biochar application on root traits: A metaanalysis. GCB Bioenergy, 9(10), 1563-1572. https:// doi.org/10.1111/gcbb.12449
  • 41. Xiong, D., Wang, D., Liu, X., Peng, S., Huang, J., & Li, Y. 2016. Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments. Annals of Botany, 117(6), 963-971. https://doi.org/10.1093/aob/mcw022
  • 42. Yao, T., Zhang, W., Gulaqa, A., Cui, Y., Zhou, Y., Weng, W., Wang, X., Liu, Q., & Jin, F. 2021. Effects of Peanut Shell Biochar on Soil Nutrients, Soil Enzyme Activity, and Rice Yield in Heavily Saline-Sodic Paddy Field. Journal of Soil Science and Plant Nutrition, 21(1), 655664. https://doi.org/10.1007/s42729-020-00390-z
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8bc64854-3cdb-4bd3-8617-cabac1b673c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.