Warianty tytułu
Języki publikacji
Abstrakty
Intensive economic development causes the risk of introducing the so-called emerging contaminants (EC) into the environment. This group of contaminants includes pharmaceuticals, including non-steroidal anti-inflammatory drugs (NSAIDs), the consumption of which is steadily increasing in Poland as well as worldwide. Such specific contaminants may also cause problems at the stage of biological treatment of wastewater, especially in individual systems that are sensitive to changes in wastewater composition. The study examined an onsite wastewater treatment system based on the activated sludge technology, to which three different pharmaceuticals were dosed in the quantities normally used in therapy. The operation of the biological reactor under these conditions was analysed by comparing contamination indicators at the inlet and outlet of the treatment plant at different doses of pharmaceuticals. It was found that the doses used did not significantly worsen the effects of wastewater treatment, except for paracetamol, which at a dose above 1000 mg/d caused a slight reduction in the efficiency of the facility. The dosed pharmaceuticals also did not deteriorate the sedimentation properties of the activated sludge. Although typical doses of pharmaceuticals do not interfere with the operation of the biological reactor, residual substances and their metabolites may be released into the environment; it is therefore reasonable to consider the introduction of an additional treatment stage to remove micropollutants from the wastewater.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
257--266
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, ul. Piątkowska 94A, 60-649 Poznań, Poland, malgorzata.makowska@up.poznan.pl
autor
- Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, ul. Piątkowska 94A, 60-649 Poznań, Poland
autor
- Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, ul. Piątkowska 94A, 60-649 Poznań, Poland
Bibliografia
- 1. Behera S.K., Kim H.W., Oh J.E., Park H.S. 2011. Sci. Total Environ., 409, 4351–4360.
- 2. Björlenius B., Ripszám M., Haglund P., Lindberg R.H., Tysklind M., Fick J. 2018. Sci. Total Environ., 633, 1496–1509.
- 3. Boroń M., Pawlak K. 2015. Pharmaceuticals in aquatic environment – literature revive. Probl. Hig. Epidemiol., 96(2), 357–363
- 4. Carmona E., Andreu V., Picó Y. 2014. Sci. Total Environ., 484, 53–63.
- 5. Cirja M., Ivashechkin P., Schäffer A., Corvini P.F.X. 2007. Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR). Rev. Environ. Sci. Biotechnol., 7, 61–78.
- 6. Goebel A., McArdell C.S., Joss A., Siegrist H., Giger W. 2007. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci. Total Environ., 372, 361–371.
- 7. Goswami L., Kumar R.V., Borah S.N., Manikandan N.A., Pakshirajan K., Pugazhenthi G. 2018. Membrane bioreactor and integrated membrane bioreactor systems for micropollutant removal from wastewater: A review. J. Water Process. Eng., 26, 314–328.
- 8. Gurung K., Ncibi M.C., Sillanpää M. 2019. Removal and fate of emerging organic micropollutants (EOMs) in municipal wastewater by a pilot-scale membrane bioreactor (MBR) treatment under varying solid retention times. Sci. Total Environ., 667, 671–680.
- 9. Hatoum R., Potier O., Roques-carmes T., Lemaitre C., Hamieh T., Toufaily J., Horn H., Borowska E. 2019. Elimination of Micropollutants in Activated Sludge Reactors with a Special Focus on the Efect of Biomass Concentration. Water, 11, 2217. doi: 10.3390/w11112217
- 10. Joss A., Keller E., Alder A.C., Goebel A., McArdell C.S., Ternes T.A., and Siegrist H. 2005. Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res., 39, 3139–3152
- 11. Joss A., Zabczynski S., Goebel A., Hoffmann B., Loeffler D., McArdell C.S., Ternes T.A., Thomsen A., and Siegrist H. 2006. Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res., 40, 1686–1696.
- 12. Kaczor G..2009. Stężenia zanieczyszczeń w ściekach odprowadzanych z wiejskich systemów kanalizacyjnych województwa małopolskiego. Infrastruktura i ekologia terenów wiejskich, 9, 97
- 13. Kosiniak M., and Muszański R. 2021. Analizy skuteczności usuwania farmaceutyków ze ścieków oczyszczonych z wykorzystaniem technologii ozonowania. Technologia wody, 13, 2(76), 4–6 2021, 46–50.
- 14. Leung H.W., Minh T.B., Murphy M.B., Lam J.C.W., So M.K., Martin M., Lam P.K.S., and Richardson B.J. 2012. Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China. Environ. Int., 42. 1–9.
- 15. Masłoń A. 2015. Dynamika zmian jednostkowej dobowej ilości ścieków w jednorodzinnym gospodarstwie domowym. Instal., 10
- 16. Pachnicka M., and Olejnik D. 2019. Pharmaceuticals and personal care products in water and wastewater. Technologia i Jakość Wyrobów, 65, 34–48
- 17. Papageorgiou M., Kosma C., and Lambropoulou D. 2016. Sci. Total Environ., 543, 547–569.
- 18. Pérez-Fernández V., Mainero Rocca L., Tomai P., Fanali S., Gentili A. 2017. Recent advancements and future trends in environmental analysis: Sample preparation, liquid chromatography and mass spectrometry. Anal Chim Acta, 983, 9–41.
- 19. Pirvu, F.; Covaliu-Mierl˘a, C.I.; Paun, I.; Paraschiv, G.; and Iancu, V. 2022. Treatment of Wastewater Containing Nonsteroidal Anti-Inflammatory Drugs Using Activated Carbon Material. Materials., 15, 559. DOI: 10.3390/ma15020559
- 20. Popa C., Favier L., Dinica R., Semrany S., Djelal H., Amrane A., Bahrim G. 2014. Potential of newly isolated wild Streptomycesstrains as agents for the biodegradation of a recalcitrant pharmaceutical, carbamazepine. Environ. Technol., 35, 3082–3091.
- 21. Salgado R., Marques R., Noronha J.P., Carvalho G., Oehmen A., Reis M.A.M. 2012. Assessing the removal of pharmaceuticals and personal care products in a fullscale activated sludge plant. Environ. Sci/ Pollut. Res., 19, 1818–1827. DOI: 10.1007/s11356-011-0693-z
- 22. Santos I.J.S., Grossman M.J., Sartoratto A., Ponezi A.N., and Durrant L.R. 2012. Degradation of the recalcitrant pharmaceuticals car-bamazepine and 17α-ethinylestradiol by ligninolytic fungi. Chem. Eng., 27, 169–174.
- 23. Sui Q., Huang J., Deng S., Yu G., Fan Q. 2010. Water Res., 44, 417–426.
- 24. Szydłowski H. 1978. Teoria pomiarów. PWN.
- 25. Tiedeken E.J., Tahar A., McHugh B., Rowan N.J. 2017. Sci. Total Environ., 574, 1140–1163.
- 26. Taheran, M., Brar S.K., Verma M., Surampalli R., Zhang T., and Valero J. 2016. Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters. Sci. Total Environ., 547, 60–77.
- 27. Ternes T. 2004. Assessment of Technologies for the Removal of Pharmaceuticals and Personal Care Products in Sewage and Drinking Water Facilities to Improve the Indirect Potable Water Reuse. Energy, Environment and Sustainable Development, 11
- 28. Ternes T.A., Meisenheimer M., McDowell D., Sacher F., Brauch H.J., Haist-Gulde B., Preuss G., Wilme U., and Zulei-Seibert N. 2002. Environ. Sci. Technol., 36, 3855–3863.
- 29. Wang J., and Wang S. 2016. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. J. Environ. Manag., 182, 620–640.
- 30. Wontorska K., and Wąsowski J. 2018. Problematyka usuwania farmaceutyków w procesach oczyszczania ścieków. Gaz Woda i Technika Sanitarna, 1, 30–36.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8ba0e049-f5ac-4afd-915c-e7f3167fc5e0