Czasopismo
2019
|
Vol. 12, no. 3
|
81--92
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Long-term performance of civil engineering projects mainly depends on the strength of underground layers. When the underground soil layers are problematic or have low bearing capacity and strength against the applied loads, application of soil stabilization methods can be effective. In this study, performance of pile-raft systems using stabilized/reinforced soil under foundation is investigated. For validation, the obtained numerical results were compared with the existing results from analytical and numerical analyses. Using the experimental data available in the literature, the variations of stiffness and strength parameters were simulated by three-dimensional finite element method and then foundation response was evaluated for each case. According to the obtained results, depending on the pile-raft configuration, different strategies of stabilization with cement, reinforcement with polypropylene fibers, or a combination of cement stabilization and fiber reinforcement can be employed to reduce the differential and maximum settlements of foundation and to improve the overall performance. In general, even though reinforcement with fibers has a positive influence on the tensile and shear strength of soil, the effect of cement stabilization on the design parameters of the foundation is more pronounced. Finally, an implementation of cost analysis of stabilization project was proposed to be conducted based on the applied materials and improvement/cost ratio.
Czasopismo
Rocznik
Tom
Strony
81--92
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
- PhD Candidate; Department of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran, a_hasanzade64@yahoo.com
Bibliografia
- [1] Panganayi, C., Ogata, H., Hattori, K., & Tom, T. (2011). Interaction between engineered cementitious composites lining and foundation subsurface drain. Advances in Civil Engineering, doi:10.1155/2011/280717.
- [2] Hasanzadeh, A., & Janalizadeh Choobbasti, A. (2016). Estimation of bearing capacity of circular footings on clay stabilized with granular soil: case study. International Journal of Civil Engineering and Geo-Environmental (IJCEG), 6, 47-54.
- [3] Basha, E.A., Hashim, R., Mahmud, H.B., & Muntohar, A.S. (2005). Stabilization of residual soil with rice husk ash and cement. Construction and Building Materials, 19(6), 448-453.
- [4] Rasouli, H., Takhtfiroozeh, H., Taghavi Ghalesari, A., & Hemati, R. (2017). Bearing capacity improvement of shallow foundations using cement-stabilized sand. Key Engineering Materials, 723, 795-800.
- [5] Prusinski, J., & Bhattacharja, S. (1999). Effectiveness of Portland cement and lime in stabilizing clay soils. Transportation Research Record: Journal of the Transportation Research Board, 1652, 215-227, https://doi.org/10.3141/1652-28.
- [6] Hasanzadeh, A., & Shooshpasha, I. (2019). Effects of silica fume on cemented sand using ultrasonic pulse velocity. Journal of Adhesion Science and Technology, doi: 10.1080/01694243.2019.1582890.
- [7] Diambra, A., Ibraim, E., Muir Wood, D., & Russell A.R. (2010). Fibre reinforced sands: experiments and modeling. Geotextiles and Geomembranes, 28(3), 238-250.
- [8] EsmaeilpourShirvani, N., TaghaviGhalesari, A., Tabari, M. K., & Choobbasti, A. J. (2019). Improvement of the engineering behavior of sandclay mixtures using kenaf fiber reinforcement. Transportation Geotechnics, 19, 1-8.
- [9] Guido, V.A., Chang, D.K., & Sweeney, A. (1986). Comparison of geogrid and geotextile reinforced earth slabs. Canadian Geotechnical Journal, 23(4), 435-440.
- [10] Lovisa, J., Shukla, S.K., & Sivakugan, N. (2010). Behaviour of prestressed geotextile-reinforced sand bed supporting a loaded circular footing. Geotextiles and Geomembranes, 28(1), 23-32.
- [11] Maher, M.H., & Gray, D.H. )1990(. Static response of sands reinforced with randomly distributed fibers. Journal of Geotechnical Engineering, ASCE 116(11), 1661-1677.
- [12] Puppala, A., & Musenda, C. (2000). Effects of fiber reinforcement on strength and volume change in expansive soils. Transportation Research Record: Journal of the Transportation Research Board, 1736, 134-140, https://doi.org/10.3141/1736-17.
- [13] Miller, C.J., & Rifai, S. (2004). Fiber reinforcement for waste containment soil liners. Journal of Environmental Engineering, 130(8), 981-985.
- [14] Consoli, N.C., Casagrande, M.D.T., & Coop, M.R. (2007(. Performance of fibre-reinforced sand at large shear strains. Geotechnique, 57(9), 751-756.
- [15] Hejazi, S.M., Sheikhzadeh, M., Abtahi, S.M., & Zadhoush, A. (2012). A simple review of soil reinforcement by using natural and synthetic fibers. Construction and Building Materials, 30, 100-116.
- [16] Li, C., & Zornberg, G. (2013). Mobilization of reinforcement forces in fiber-reinforced soil. Journal of Geotechnical and Geoenvironmental Engineering, 139(1), 107-115.
- [17] Kaniraj, S.R., & Havanagi, V.G. (2001). Behavior of cement-stabilized fiber-reinforced fly ash-soil mixtures. Journal of Geotechnical and Geoenvironmental Engineering, 127(7), 574-584.
- [18] Tang, C.S., Shi, B., Gao, W., Chen, F., & Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25(3), 194-202.
- [19] Khattak, M.J., & AlRashidi, M. (2006). Durability and mechanistic characteristics of fiber reinforced soil-cement mixtures. International Journal of Pavement Engineering, 7(1), 53-62, http://dx.doi.org/10.1080/10298430500489207.
- [20] Consoli, N.C., Vendruscolo, M.A., Fonini, A., & Dalla Rosa, F. (2009). Fiber reinforcement effects on sand considering a wide cementation range. Geotextiles and Geomembranes, 27(3), 196-203, doi:10.1016/j.geotexmem.2008.11.005.
- [21] Chen, M., Shen, S.L., Arulrajah, A., Wu, H.N., Hou, D.W., & Xu, Y.S. (2015). Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber-reinforced and cement-stabilized Shanghai soft clay. Geotextiles and Geomembranes, 43(6), 515-523.
- [22] Hazirbaba, K. (2018). Large-scale direct shear and CBR performance of geofibre-reinforced sand. Road Materials and Pavement Design, 19(6), 1350-1371, https://doi.org/10.1080/14680629.2017.1310667.
- [23] Festugato, L., Menger, E., Benezra, F., Kipper, E.A., & Consoli, N.C. (2017). Fibre-reinforced cemented soils compressive and tensile strength assessment as a function of filament length. Geotextiles and Geomembranes, 45(1), 77-82.
- [24] Divya, P. V., Viswanadham, B. V. S., & Gourc, J. P. (2018). Hydraulic conductivity behaviour of soil blended with geofiber inclusions. Geotextiles and Geomembranes, 46(2), 121-130.
- [25] Li, Y., Ling, X., Su, L., An, L., Li, P., & Zhao, Y. (2018). Tensile strength of fiber reinforced soil under freeze-thaw condition. Cold Regions Science and Technology, 146, 53-59.
- [26] Lee, J., Kim, Y., & Jeong, S.S. (2010). Three-dimensional analysis of bearing behavior of piled raft on soft clay. Computers and Geotechnics, 37(1-2), 103-114, doi:10.1016/j.compgeo.2009.07.009.
- [27] Modarresi, M., Rasouli, H., Taghavi Ghalesari, A., & Baziar, M.H. (2016). Experimental and numerical study of pile-to-pile interaction factor in sandy soil. Procedia Engineering, 161, 1030-1036, https://doi.org/10.1016/j.proeng.2016.08.844.
- [28] Taghavi Ghalesari, A., Barari, A., Fardad Amini, P., & Ibsen, L.B. (2015). Development of optimum design from static response of pile-raft interaction. Journal of Marine Science and Technology, 20(2), 331-343, doi 10.1007/s00773-014-0286-x.
- [29] Taghavi Ghalesari, A., & Janalizadeh Choobbasti, A. (2018). Numerical analysis of settlement and bearing behaviour of piled raft in Babol clay. European Journal of Environmental and Civil Engineering, 22(8), 978-1003. https://doi.org/10.1080/19648189.2016.1229230.
- [30] van Impe, W.F. (2001). Methods of analysis of piled raft foundations. International Society of Soil Mechanics and Geotechnical Engineering, Technical Committee TC18 on Piled Foundations.
- [31] Poulos, H.G. (1994). An approximate numerical analysis of pile-raft interaction. International Journal for Numerical and Analytical Methods in Geomechanics, 18, 73-92.
- [32] Poulos, H.G. (1991). In Computer methods and advances in geomechanics (Eds. Beer et al.), pp. 183-191. Rotterdam: Balkema.
- [33] Horikoshi, K., & Randolph, M.F. (1998). A contribution to the optimum design of piled rafts. Geotechnique, 48(2), 301-317.
- [34] Taghavi Ghalesari, A., Barari, A., Fardad Amini, P., & Ibsen, L.B. (2013). The settlement behavior of piled raft interaction in undrained soil. Proc. IACGE 2013, China: Challenges and Recent Advances in Geotechnical and Seismic Research and Practices, GSP 232 (ASCE), 605-612.
- [35] Prakoso, W.A., & Kulhawy, F.H. (2001). Contribution to piled raft foundation design. Journal of Geotechnical and Geoenvironmental Engineering, 127(1), 17-24.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8b84c47b-b5ba-4e2b-a919-29ae54825ec1