Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 7 | 192--202
Tytuł artykułu

Design and Visualization of the Ten-Electrode GlidArc Plasma Reactor Using the Autodesk Inventor Environment

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work presents the process of designing a plasma reactor with a gliding arc discharge. The topic discussed is motivated by the large and still modern application potential of non-thermal plasma in the processing of gas mixtures and plasmachemical treatment with the afterglow product. The process of designing a completely new plasma reactor with 10 arc-shaped electrodes is described. In the design process, the author relies on experience with existing sliding discharge reactors at the Lublin University of Technology. The design process is carried out using the modern Autodesk Inventor solid modeler environment. Partial elements of the plasma reactor were designed and assembled into an assembly. The whole work is complemented by the presentation of selected, more important physical parameters of these parts. A special part is devoted to presenting a realistic render of reactor body.
Wydawca

Rocznik
Strony
192--202
Opis fizyczny
Bibliogr. 17 poz., fig., tab.
Twórcy
  • Faculty of Mathematics and Information Technology, Lublin University of Technology, Nadbystrzycka 38D 20-618 Lublin, Poland, p.krupski@pollub.pl
Bibliografia
  • 1. Hanon F, Gaigneaux EM. Post-discharge: An interesting step to improve heterogeneous catalysts synthesized by glidarc plasma? Chemical Engineering Journal. 2024; 489: 151088.
  • 2. Ben Othmen C, Wartel M, Iséni S, Pellerin S. Degradation of herbicides in water using non-thermal plasmas (NTP) at atmospheric pressure. In: International Workshop on Microplasmas (IWM 12). Orléans (Auditorium du Musée des Beaux Arts), France; 2024. Available from: https://hal.science/hal-04606146
  • 3. Rodriguez M, Leonardi SA, Hanon F, Miró EE, Milt VG, Gaigneaux EM. Plasma-assisted deposition of Mn and Fe phases on CeO2 biomorphic fibers for soot combustion and CO oxidation. Catalysis Today. 2024; 431: 114457.
  • 4. Zheng H, Jiang LJ, Zhang S, Ni G. Review of research on VOCs treatment by gliding arc plasma, Journal of Environmental Engineering Technology, 2024; 14(2): 425–436 doi: 10.12153/j.issn.1674-991X.20230370.
  • 5. Trifi B, Marzouk Trifi I, Kouass S, Zahraa O, Alatrache A. Gliding arc plasma treatment of levofloxacin using experimental design approach. CLEAN – Soil, Air, Water. 2023; 51(7): 2200364.
  • 6. Boyom-Tatchemo FW, Devred F, Acayanka E, Kamgang-Youbi G, Nzali S, Laminsi S, Gaigneaux, EM. Effect of cation insertion on the stability of gliding arc plasma-precipitated mesoporous MnO2 dye bleaching catalysts. Journal of Materials Research. 2023; 38(17): 4144–56.
  • 7. Seutcha RL, Kamgang-Youbi G, Acayanka E, Vermile V, Devred F, Gaigneaux EM. Plasma synthesis of various polymorphs of tungsten trioxide nanoparticles using gliding electric discharge in humid air: characterization and photocatalytic properties. Plasma Sci Technol. 2023; 25(12): 125502.
  • 8. Mogo JPK, Fovo JD, Sop-Tamo B, Mafouasson HNA, Ngwem MCN, Tebu MJ, Youbi GK, Laminsi S. Effect of gliding arc plasma activated water (GAPAW) on maize (Zea mays L.) Seed Germination and Growth. Seeds. 2022; 1(4): 230–43.
  • 9. Bostanaru AC, Nastasa V, Pavlov-Enescu C, Hnatiuc E, Mares M. P034 Non-conventional alternatives to prevent Candida auris infections. Medical Mycology. 2022; 60(1): myac072P034.
  • 10. Czernichowski A. Plazmowo-katalityczna konwersja palnej materii węglonośnej do czystego gazu syntezowego CO + H2. Przemysł Chemiczny. 2023; 1: 56–61.
  • 11. Komarzyniec G, Aftyka M. Analysis of plasma reactor interaction with the power grid depending on the power supply design. Applied Sciences. 2023; 13(4): 2279.
  • 12. Hnatiuc E, Astanei D, Ursache M, Hnatiuc B, Brisset JL. A review over the cold plasma reactors and their applications. In: 2012 International Conference and Exposition on Electrical and Power Engineering. 2012: 497–502. Available from: https://ieeexplore.ieee.org/document/6463884.
  • 13. Gong X, Lin Y, Li X, Wu A, Zhang H, Yan J, Du C. Decomposition of volatile organic compounds using gliding arc discharge plasma. Journal of the Air & Waste Management Association. 2020; 70(2): 138–57.
  • 14. Zhu F, Li X, Zhang H, Yan J, Ni M. Destruction of toluene by rotating gliding arc discharge. In: 2016 IEEE International Conference on Plasma Science (ICOPS). 2016: 1–1. Available from: https://ieeex-plore.ieee.org/document/7534178.
  • 15. Czernichowski A, Czernichowski P. Glidarc-assisted cleaning of flue gas from destruction of conventional or chemical weapons. Environment Protection Engineering 2010; 36(4): 36–45.
  • 16. Krupski P, Stryczewska HD. A gliding arc microreactor power supply system based on push–pull converter topology. Applied Sciences. 2020; 10(11): 3989.
  • 17. Diatczyk J. Reaktor mikroplazmowy z regulowanym odstępem między elektrodami do obróbki powierzchni : opis patentowy nr 222477. 2014 Feb 4; Available from: https://bc.pollub.pl/dlibra/publication/13249/edition/12928.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8b6e1757-b699-4dff-84aa-2a73a9b8611f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.