Warianty tytułu
Języki publikacji
Abstrakty
Synthesis and characterization of a highly efficient photoconductive nanocomposite comprising of two common metal oxides: copper oxide (CuO) and silicon dioxide (SiO2>/sub>) are being reported in this paper. The CuO/SiO2 nanocomposite has been synthesized using a cost-effective and facile sol gel route. The structural, chemical and optical properties of the prepared samples have been studied using various characterization techniques. The UV-Vis analysis revealed better absorption in the case of the nanocomposite as compared to its parent materials. X-ray diffraction (XRD) analysis has been employed to determine the structural formation of the nanocomposite and the crystallite size with the use of Scherrer's formula. The photo conductivity study of the sample showed enhanced photocurrent in the case of nanocomposite as compared to its single components, thus, presenting it as a potential candidate for solar cell applications, especially as photoanode material in the dye-sensitized solar cells (DSSC).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
826--834
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Department of Physics, Energy Nanotechnology Centre (ENTeC), Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai 600 034, India
autor
- Department of Physics, Energy Nanotechnology Centre (ENTeC), Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai 600 034, India
autor
- Department of Physics, Energy Nanotechnology Centre (ENTeC), Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai 600 034, India
autor
- Department of Physics, Energy Nanotechnology Centre (ENTeC), Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai 600 034, India
autor
- Department of Physics, Energy Nanotechnology Centre (ENTeC), Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai 600 034, India, jmshyla@gmail.com
Bibliografia
- [1] Ajayan P.M., Schadler L.S., Braun P.V., Nanocomposites Science and Technology, Wiley & Sons, New York, 2003.
- [2] Kim H., Achermann M., Balet L.P., Hollingsworth J.A., Klimov V.I., J. Am. Chem. Soc., 127 (2005), 544.
- [3] Hines M.A., Guyot Sionnest P., J. Phys. Chem., 100 (1996), 468.
- [4] Tohidi, Hossein, Grigoryan, Garnik, Sarkeziyan, Iran. J. Chem. Chem. Eng., 29 (2010), 27.
- [5] Huang X., Fu Z., Yang X., Sun Z., Zhong M., Yi Y., Tang Y., Wang C., J. Porous Mat., 21 (2014), 9.
- [6] Ali A., Jo J., Yang Y. J., Choi K. H., Appl. Phys. A-Mater., 114 (2014), 323.
- [7] Naazeeruddin M.K., Kay A., Gratzel M., J. Am. Chem. Soc., 155 (1993), 6832.
- [8] Vayssieres L., Appl. Phys. A-Mater., 89 (2007), 1.
- [9] Cao J., Wang Y., Shi J., Sun G., Zhang Z., J. Porous Mat., 18 (2011), 667.
- [10] Naddaf M., Mrad O., Al-Zier A., Appl. Phys. A-Mater., 115 (2014), 1345.
- [11] Livage J., Hemry M., Sanchez C., Prog. Solid State Ch., 18 (1988), 259.
- [12] Zhu Y. F., Zhang L., Gao C, Cao L. L., J. Mater. Sci., 35 (2000), 4049.
- [13] Aguado J., van Rafael G., Maria-Jose L-M., Javier M., Appl. Catal. A-Gen., 312 (2006), 202.
- [14] Chatterjee S.K., X-ray Diffraction: Its Theory and Application, PHI, India, 2010.
- [15] Hall B.D., Zanchet D., Ugarte D., J. Appl. Crystallogr., 33 (2000), 1335.
- [16] Monshi A., Foroughi R.M., World J. Nano Sci. Eng., 2 (2012), 154.
- [17] Geng Z.R., Li Y., Yan R. J., Wang C.B., Ling X.M., Adv. Mater. Res., 834 – 836 (2013), 50.
- [18] John Coates, Interpretation of Infrared Spectra, A Practical Approach, in: Meyers R.A. (Ed.), Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd., Chichester, 2000, p. 10815.
- [19] Owen T., Fundamentals of UV visible spectroscopy, Agilent Technology, Germany, 2000.
- [20] Ponniah D., Xavier F., Phys. Biol., 20 (2007), 392.
- [21] Ethiraj A. S., Kang D. J., Nanoscale Res. Lett., 7 (2012), 70.
- [22] Behera M., Giri G., Mater. Sci.-Poland, 32 (2014), 702.
- [23] Sahay R., Kumar P.S., Aravindhan V., Ling W.C., J. Phys. Chem. C, 116 (2012), 18087.
- [24] Yeh C.L., Yeh S.H., Ma H.K., Powder Technol., 145 (2004), 1.
- [25] Senkevich J. J., Desu S. B., Appl. Phys. A-Mater., 70 (2000), 541.
- [26] Castro A.L., Nunes M.R., Solid State Sci., 10 (2008), 602.
- [27] Li J., Vizkelethy G., Revesz P., Mayer J.W., Tu K.N., J. Appl. Phys., 69 (1991), 1020.
- [28] Kumar A.D., Xavier F.P., Shyla M.J., Appl. Nanosci., 2 (2012), 429.
- [29] Dhanasekaran V., Soundaram N., Chandramohan R., New J. Chem., 38 (2014), 2327.
- [30] Ahmed N.M., Selim M.M., Anti-Corros. Method. M., 57 (2010), 133.
- [31] Yu H., Lui R., Wang X., Wang P., Yu J., Appl. Catal. B-Environ., 111 (2012), 326.
- [32] Zhang S., Zhang C., Man Y., Zhu Y., J. Solid State Chem., 179 (2006), 62.
- [33] Wang X., Li S., Yu H., Yu J., J. Mol. Catal. A-Chem., 334 (2011), 52.
- [34] Stengl V., Bakardjieva S., Grygar T. M., Bludska J., Kormunda M., Chem. Cent. J., 7 (2013), 41.
- [35] Thekkae Padil V.V., Černík M., Int. J. Nanomed., 8 (2013), 889.
- [36] Rahman A., Ismail A., Jumbianti D., Magdalena S., Indian J. Chem. B, 9 (2009), 355.
- [37] Azam A., Ahmed A.S., Oves M., Khan M.S., Habib S.S., Memic A., Int. J. Nanomed., 7 (2012), 6003.
- [38] Cruza da R.S., Silvaa de J.M., Arnolda U., Sercheli Schuchardt M.S., J. Braz. Chem. Soc., 13 (2002), 170.
- [39] Neumann R., Levin-Elad M., J. Catal., 166 (1997), 206.
- [40] Miller J.B., Rankin S.E., Ko E.I., J. Catal., 148 (1994), 673.
- [41] Moretti G., Dossi C., Fusi A., Recchia S., Psaro R., Appl. Catal. B-Environ., 1 (1999), 67.
- [42] Martinez J.R., Ruiz F., Vorobiev Y.V., Gonzalez J., J. Chem. Phys., 109 (1998), 7511.
- [43] Wang Z., Lui Q., Yu J., Wu T., Wang G., Appl. Catal. A-Gen., 239 (2003), 87.
- [44] Jimenez J.A., Appl. Phys. A-Mater., 114 (2014), 1369.
- [45] Dhar S., Chakrabarti S., Semicond. Sci. Tech., 11 (1996), 1231.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8b50842b-7a1d-40aa-bbd9-4945f233b854