Warianty tytułu
Języki publikacji
Abstrakty
This paper is motivated by the recent progress on the Hermite-Hadamard inequality for convex functions defined on the bounded closed interval, obtained by Z. Pavić [Z. Pavić, Improvements of the Hermite-Hadamard inequality, J. Inequal. Appl. 2015 (2015), Article ID 222]. As a generalization, we obtained a new refinement of the Hermite-Hadamard inequality for co-ordinated convex functions defined on the rectangle.
Czasopismo
Rocznik
Tom
Strony
73--81
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey, hsyn.budak@gmail.com
autor
- Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey, fuatusta@duzce.edu.tr
autor
- Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey, sarikayamz@gmail.com
Bibliografia
- [1] M. Alomari and M. Darus, The Hadamard’s inequality for s-convex function of 2-variables on the co-ordinates, Int. J. Math. Anal. (Ruse) 2 (2008), no. 13-16, 629-638.
- [2] A. G. Azpeitia, Convex functions and the Hadamard inequality, Rev. Colombiana Mat. 28 (1994), no. 1, 7-12.
- [3] S. S. Dragomir, Two mappings in connection to Hadamard’s inequalities, J. Math. Anal. Appl. 167 (1992), no. 1, 49-56.
- [4] S. S. Dragomir, On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math. 5 (2001), no. 4, 775-788.
- [5] S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Proyecciones 34 (2015), no. 4, 323-341.
- [6] S. S. Dragomir and C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000.
- [7] S. S. Dragomir, J. Pečarić and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math. 21 (1995), no. 3, 335-341.
- [8] A. El Farissi, Simple proof and refinement of Hermite-Hadamard inequality, J. Math. Inequal. 4 (2010), no. 3, 365-369.
- [9] D.-Y. Hwang, K.-L. Tseng and G.-S. Yang, Some Hadamard’s inequalities for co-ordinated convex functions in a rectangle from the plane, Taiwanese J. Math. 11 (2007), no. 1, 63-73.
- [10] M. Iqbal, S. Qaisar and M. Muddassar, A short note on integral inequality of type Hermite-Hadamard through convexity, J. Comput. Anal. Appl. 21 (2016), no. 5, 946-953.
- [11] M. Klaričić Bakula, An improvement of the Hermite-Hadamard inequality for functions convex on the coordinates, Aust. J. Math. Anal. Appl. 11 (2014), no. 1, 1-7.
- [12] M. E. Özdemir, C. Yıldız and A. O. Akdemir, On the co-ordinated convex functions, Appl. Math. Inf. Sci. 8 (2014), no. 3, 1085-1091.
- [13] Z. Pavić, Improvements of the Hermite-Hadamard inequality, J. Inequal. Appl. 2015 (2015), Article ID 222.
- [14] J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Math. Sci. Eng. 187, Academic Press, Boston, 1992.
- [15] M. Z. Sarıkaya, E. Set, M. E. Ozdemir and S. S. Dragomir, New some Hadamard’s type inequalities for co-ordinated convex functions, Tamsui Oxf. J. Inf. Math. Sci. 28 (2012), no. 2, 137-152.
- [16] K.-L. Tseng and S.-R. Hwang, New Hermite-Hadamard-type inequalities and their applications, Filomat 30 (2016), no. 14, 3667-3680.
- [17] B.-Y. Xi, J. Hua and F. Qi, Hermite-Hadamard type inequalities for extended s-convex functions on the co-ordinates in a rectangle, J. Appl. Anal. 20 (2014), no. 1, 29-39.
- [18] G.-S. Yang and M.-C. Hong, A note on Hadamard’s inequality, Tamkang J. Math. 28 (1997), no. 1, 33-37.
- [19] G.-S. Yang and K.-L. Tseng, On certain integral inequalities related to Hermite-Hadamard inequalities, J. Math. Anal. Appl. 239 (1999), no. 1, 180-187.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8b20d00b-2c57-4cf9-a773-11879fbc84ea