Warianty tytułu
Wpływ FWM z multiplekserem AWG w systemie DWDM
Języki publikacji
Abstrakty
This article focuses on the creation of the sixteen-channel DWDM (Dense Wavelength Division Multiplex) system according to the recommendation ITU-T G.694.1. Currently it is not possible to form a fully optical communication system without testing all non-linear effects possibly influencing its performance. The trend in high-speed transfer communication systems is using the multiplex, so we focused on the AWG (Arrayed Waveguide Grating) multiplexor/demultiplexor. For the purpose of this article we have created a DWDM system with the speed of 10Gbps where we compared two line codes, namely NRZ (Non Return Zero) and BRZ (Bipolar Return Zero) for the channel gaps of 12.5GHz and 100GHz. The individual codes were created in the „Matlab” programme and consequently implemented into the environment generated by „OptSim” by the RSoft company. The resulting signal was evaluated based on BER (Bit Error Rate) and the connected Q-factor for the channel No.3. The created system shows the influence of the system by the non-linear effect FWM (Four Wave Mixing) during the compression between the channels.
Niniejszy artykuł ma na celu utworzenie szesnastowego kanału DWDM (Dense Wavelength Division Multiplex) zgodnie z normą ITUT G.694.1. Obecnie nie jest możliwe wdrożenie w pełni optycznego systemu komunikacyjnego bez testowania wszystkich zjawisk nieliniowych, które mogą działać w danym systemie w czasie rzeczywistym. Ponieważ w systemach transmisji danych o dużej szybkości wykorzystuje się multipleks, skupiliśmy się na multiplekserze i demultiplekserze AWG (Arrayed Waveguide Grating). W artykule zbadano system DWDM o szybkości 10Gbps, porównujący dwa kody linii NRZ (Non Return Zero) i BRZ (Bipolar Return Zero) dla kanałów 12.5 GHz i 100 GHz. Poszczególne kody zostały utworzone w programie Matlab, a następnie zostały wdrożone w środowisku OptSim przez firmę RSoft. Powstały system jest obliczany na podstawie szybkości błędu bitowego BER i związanego z tym współczynnika Q dla określonego kanału nr 3. Utworzony system pokazuje wpływ na system poprzez efekt nieliniowy FWM (Four Wave Mixing) podczas kompresji między kanałami.
Czasopismo
Rocznik
Tom
Strony
113--117
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
- University of Žilina, Faculty of Management Science and Informatics, Department of Information Networks, Univerzitná 8215/1, 01026, Žilina, Slovakia, petr.ivaniga@fri.uniza.sk
autor
- Košice University of Technology, Faculty of Electrical Engineering and Informatics, Department of Electronic and Multimedia Communications, Vysokoškolská 4, 04120, Košice, Slovakia, tomas.ivaniga@tuke.sk
autor
- Košice University of Technology, Faculty of Electrical Engineering and Informatics, Department of Electronic and Multimedia Communications, Vysokoškolská 4, 04120, Košice, Slovakia, jan.turan@tuke.sk
autor
- Košice University of Technology, Faculty of Electrical Engineering and Informatics, Department of Electronic and Multimedia Communications, Vysokoškolská 4, 04120, Košice, Slovakia, lubos.ovsenik@tuke.sk
autor
- Košice University of Technology, Faculty of Electrical Engineering and Informatics, Department of Electronic and Multimedia Communications, Vysokoškolská 4, 04120, Košice, Slovakia, michal.marton@tuke.sk
autor
- Košice University of Technology, Faculty of Electrical Engineering and Informatics, Department of Electronic and Multimedia Communications, Vysokoškolská 4, 04120, Košice, Slovakia, david.solus@tuke.sk
autor
- Košice University of Technology, Faculty of Electrical Engineering and Informatics, Department of Electronic and Multimedia Communications, Vysokoškolská 4, 04120, Košice, Slovakia, jakub.oravec@tuke.sk
autor
- Košice University of Technology, Faculty of Electrical Engineering and Informatics, Department of Electronic and Multimedia Communications, Vysokoškolská 4, 04120, Košice, Slovakia, tomas.huszanik@tuke.sk
Bibliografia
- [1] Tóth J., Ovseník Ľ., Turán J., An overview of various types of waveguide grating based demultiplexors in WDM systems, In: IWSSIP 2015. - London : City University, 2015, ISBN 978-14673-8352-3, 29-32
- [2] Steingartner, W., Novitzká, V., Categorical model of structural operational semantics for imperative language, Journal of Information and Organizational Sciences, Vol. 40, No. 2, 2016, pp. 203-219
- [3] Ivaniga T., Ivaniga P., Comparison of the Optical Amplifiers EDFA and SOA Based on the BER and Q-Factor in C-Band, Advances in Optical Technologies, Vol. 2017, 2017, Article ID 9053582, 9 pp., DOI:10.1155/2017/9053582
- [4] Smiesko J., Uramova J., Access node dimensioning for IPTV traffic using effective bandwidth, Komunikacie, Vol. 14, No. 2, 2012, 11–16
- [5] Skorpil, V., Precechtel, R., Training a neural network for a new node element design, Przeglad Elektrotechniczny, Vol. 89, No. 2 B, 2013, pp.187-192
- [6] Ivaniga T., Ivaniga P., Turán J., Ovseník Ľ., Analysis of possibilities of increasing the spanned distance using EDFA and DRA in DWDM system, Komunikacie, Vol. 19, No. 3, 2017, pp. 88-95
- [7] Mikúš Ľ., Evaluations of the error rate in backbone networks, Elektrorevue, Vol. 12, No. 2, 2010, 1-6
- [8] Abdullaev A., Turán J., Survey of the problems and solutions of arrayed waveguide gratings used in the optical networks, Acta Electrotechnica et Informatica, Vol. 14, No. 3, 2014, pp. 49-53, DOI: 10.15546/aeei-2014-0029
- [9] Figuli L., Smieško J., Recognition and Modelling of Bursty Period of Flow, WSEAS Transactions on Communications, Vol. 13, Art. 49, 2014, pp. 444-451
- [10] Ivaniga T., Turán J., Ovseník Ľ., Verification of the SPM Impact in DWDM System Using AWG Multiplexer / Demultiplexer, Acta Electrotechnica et Informatica, Vol. 17, No. 1, 2017, pp. 17-22, DOI:10.15546/aeei-2017-0003
- [11] Ivaniga, P., Ivaniga, T., Comparison of DPSK and RZ-DPSK Modulations in Optical Channel with Speed of 10 Gbps, Journal of Information and Organizational Sciences, Vol. 41, No. 2, 2017, pp. 185-196
- [12] Sujecki, S., Photonics Modelling and Design, CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, 2015, 393 pp., ISBN-13: 978-1-4665-6126-7
- [13] Ivaniga P., Ivaniga T., 10 Gbps optical line using EDFA for long distance lines, Przeglad Elektrotechniczny, Vol. 93, No. 3, 2017, pp. 193-196, DOI:10.15199/48.2017.03.45
- [14] Smieško, J., IP Network Management of Source for IP Traffics, Scientific Papers of the University of Pardubice. Series D, Faculty of Economics & Administration, Vol. 21, No. 32, 2014, pp.109-117
- [15] Steingartner, W., Novitzká, V., A new approach to semantics of procedures in categorical terms, (2015) 2015 IEEE 13th International Scientific Conference on Informatics, INFORMATICS 2015 - Proceedings, art. no. 7377842, pp. 252257. DOI: 10.1109/Informatics.2015.7377842
- [16] Olonkins, S., Bobrovs, V., Ivanovs, G., Investigation of fiber optical parametric amplifier performance in DWDM transmission systems, Elektronika ir Elektrotechnika, Vol. 20, No. 1, 2014, pp. 88-91. DOI: 10.5755/j01.eee.20.1.6170
- [17] Papan J., Drozdova M., Segec P., Mikus L., Hrabovsky J., The new PIM-SM IPFRR mechanism, ICETA 2015 - 13th IEEE International Conference on Emerging eLearning Technologies and Applications, Proceedings, art. no. 7558504, pp.1-7, DOI: 10.1109/ICETA.2015.7558504
- [18] Liptai P., Dolník B., Pavlík M., Zbojovský J., Špes M., Check measurements of magnetic flux density: Equipment design and the determination of the confidence interval for EFA 300 measuring devices, Measurement, Vol. 111, 2017, pp. 51-59
- [19] Smiesko J., Exponential model of token bucket system, Komunikacie, Vol. 5, No.4, pp.66-70
- [20] Liptai P., Moravec M., Lumnitzer, E., Lukáčová, K., Impact analysis of the electromagnetic fields of transformer stations close to residential buildings, SGEM, Vol. 1, 2014, pp.355-360
- [21] Pavlik, M., Kruželák, L., Mikita, M., Špes, M., Bucko, S., Lisoň, L., Kosteres, M., Beňa, Ľ., Liptai, P., The impact of electromagnetic radiation on the degradation of magnetic ferrofluids, Archives of Electrical Engineering, Vol. 66, No. 2, 2017, pp.361-369, DOI: https://doi.org/10.1515/aee-2017-0027
- [22] Papán, J., Segeč, P., Palúch, P., Mikuš, Ľ., Moravčík, M.The survey of current IPFRR mechanisms, Advances in Intelligent Systems and Computing, 511 AISC, pp. 229-240, DOI: 10.1007/978-3-319-46535-7_18
- [23] Lach Z., Effect of Uncertain Reference Signal on Uncertainty of estimates of the First Order PMD in a Single Mode Optical Fibre, Przeglad Elektrotechniczny, Vol. 92, No. 11, 2016, pp. 148-153, DOI:10.15199/48.2016.11.37
- [24] Skorpil, V., Precechtel, R., Management of Routing Using Artificial Intelligence, Proceedings of the 11th International Conference Knowledge in Telecommunication Technologies and Optics – KTTO 2011. pp. 29-32, June 22-24, 2011, Szczyrk, Poland, ISBN 978-80-248-2399-7.
- [25] Ferenczi, I., Vásárhelyi, J., Reaction time measurement of nonsynchronized Industrial Ethernet IO device, Proceedings of the 2015 16th International Carpathian Control Conference, ICCC 2015, art. no. 7145058, pp. 121-124, DOI: 10.1109/CarpathianCC.2015.7145058
- [26] Mikúš Ľ., Available tools for the educational course development, In: ICETA 2003: 2nd international conference on emerging telecommunications technologies and applications and the 4th conference on virtual universit, Košice: Technical University, 2003. ISBN 80-89066-67-4.pp. 295-297
- [27] Ivaniga T., Ovsenik L., Turán J., Experimental model of Passive Optical Network Technical University of Kosice, Proceedings of the 2015 16th International Carpathian Control Conference, ICCC 2015, art. no. 7145071, pp. 186-189, DOI: 10.1109/CarpathianCC.2015.7145071
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8acecadd-ee53-4dd1-95d6-f534063fb1b2