Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | Vol. 69, no. 1 | 271--283
Tytuł artykułu

An experimental study of the geometric performance of the hydrosuction dredging system

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sedimentation in dam reservoirs causes problems such as reducing storage volume and useful life of reservoirs, reducing the volume of food control, sluices, tunnels, and turbines clogged, and other related issues. Despite the development of several methods to solve this problem, the sedimentation rate of the world’s dam reservoirs indicates the existence of this problem. The Hydrosuction Sediment Removal System discharges sediments inside the dam reservoir using the energy caused by the diference in water level in the reservoir and the output point of the system. This study is aimed to investigate the efect of geometric properties of the hydrosuction system (efective head, suction pipe diameter, and suction pipe inlet angle) on its performance and to understand the fow characteristics and behaviors in the hydrosuction dredging operation. Quantitative comparison of the results revealed that, with the increase in the suction pipe diameter from 478 to 956, the growth of the efective head from 21 × 103 to 34 × 103 , and the increase in the suction pipe inlet angle from 30º to 90º, the maximum diameter and depth of the scour hole increased by 103% and 275%, 22% and 49%, and 38% and 50%, respectively. At the beginning of the desilting process by the hydrosuction system, seepage fow through deposits removed sediment particles and, along with the scour hole dimensions development, it reduced the efect of this fow type. Irregular vortexes were observed in the fnal stages of the desilting process. These vortexes caused limited development in the scour hole.
Wydawca

Czasopismo
Rocznik
Strony
271--283
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
  • Department of Water Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
  • Department of Civil Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
  • Department of Water Engineering, Shahid Bahonar University of Kerman, Kerman, Iran, zounemat@uk.ac.ir
Bibliografia
  • 1. Asiaban P, Kouchakzadeh S, Asiaban S (2017) Enhanced hydrosuction performance for cohesive sediment removal in low-head reservoirs. Ain Shams Eng J 4:491–497
  • 2. Brahme SB, Herbich JB (1986) Hydraulic model studies for suction cutterheads. J Waterw Port Coast Ocean Eng 112(5):591–606
  • 3. Chen SC, Wang SC, Wu CH (2010) Sediment removal efficiency of siphon dredging with wedge-type suction head and float tank. Int J Sedim Res 25(2):149–160
  • 4. Crookston BM (2010) Labyrinth Weirs. Doctoral Thesis, University of Utah State
  • 5. Forutan-Eghlidi M, Zounemat-Kermani M, Rahimpour M, Moghbeli A (2019) Experimental study on the effect of distance of suction tube mouth from sediment surface on the hydrosuction system performance. J Hydraulic 13(3):47–58 (in Persian)
  • 6. Garcia MH (2007) Sedimentation engineering. ASCE, Restone
  • 7. Heller V (2011) Scale effects in physical hydraulic engineering models. J Hydaulic Res 49(3):293–306
  • 8. Hotchkiss H, Huang X (1995) Hydrosuction Sediment-Removal Systems (HSRS): principles and field test. J Hydraul Eng 121(6):479–489
  • 9. Kantoush SA, Sumi T, Murasaki M (2011) Evaluation of sediment bypass efficiency by flow field and sediment concentration monitoring techniques. J Hydra Eng JSCE 67(4):I_169–I_174
  • 10. Ke WT, Chen YW, Hsu HC, Toigo K, Weng WC, Capart H (2016) Influence of sediment consolidation on hydrosuction performance. J Hydraul Eng 142(10):04016037
  • 11. Jacobsen T (1997) Sediment problem in reservoirs control of sediment deposits. Doctoral Thesis. Norwegian university of science and technology (NTNU)
  • 12. Jacobsen T (2006) Sediment removal at the Malana reservoir. India Int J Hydropower Dams 13(1):74–44
  • 13. Knauss J (1987) Swirling flow problems at intakes. 1AA, Balkema, Rotterdam
  • 14. Mahdavi-meymand A, Zounemat-Kermani M, Qaderi K (2020) Experiment study of hydrosuction dredging blockage depth under different hydralic conditions. Environ Water Eng 6(3):234–244 (in persian)
  • 15. Miyakawa M, Hakoishi N, Sakurai T (2014) Development of the sediment removal suction pipe by laboratory and filed experiment. CIGB-ICOLD 82th International Symposium on Dams in A Global Environmental Challenges, Bali, Indonesia
  • 16. Morris GL, Fan J (1997) Reservoir sedimentation handbook. McGraw-Hill, New York
  • 17. Lee C, Foster G (2013) Assessing the potential of reservoir outflow management to reduce sedimentation using continuous turbidity monitoring and reservoir modeling. J Hydrol Processes 27(10):1426–1439
  • 18. Liu J, Minami S, Otsuki H, Liu B, Ashida K (2005) Environmental impacts of coordinated sediment flushing. J Hydaulic Res 42(5):461–472
  • 19. Pishgar R, Ayyoubzade SA, Ghodsian M, Saneie M (2018) The influence of burrowing-type suction pipe geometrical and mechanical specifications on the hydrosuction method performance. ISH J Hydraul Eng. https://doi.org/10.1080/09715010.2018.1531732
  • 20. Qian N (1982) Reservoir sedimentation and slope stability; technical and environmental effects. In: Fourteenth International Congress on Large Dams, Transactions, Rio de Janeiro, Brazil Vol. 3, pp. 639–690
  • 21. Rehbinder G (1984) Sediment removal with a siphon at critical flux. J Hydraul Res 32(6):845–860
  • 22. Sakurai T, Hakoishi N (2012) Hydraulic characteristics of the Burrowing Type Sediment Removal Suction Pipe. In: Proceedings of the International Symposium on Dams for a Chaning World - 80th Annual Meeting and 24th Congress of ICOLD. Kyoto, Japan
  • 23. Shrestha HS (2012) Application of hydrosuction sediment removal system (HSRS) on peaking ponds. J Water Energy Environ 11:43–48
  • 24. Tao Y, Li C, Min X, Min Z (2012) Siphon pipeline resistance characteristic research. J Procedia Eng 28:99–104
  • 25. Ullah SM, Mazurek KA, Rajaratnam N, Reitsma SR (2005) Siphon removal of cohesionless materials. J Waterw Port Coastal Ocean Eng 3(115):115–122
  • 26. Wang H, Kondolf M (2014) Upstream sediment control dams: five decades of experience in the rapidly eroding Dahan river basin. Taiwan J Am Water Resour Assoc 50(3):735–747
  • 27. Winterwerp JC, van Kesteren, van Prooijen WGM, Jacobs W (2012) A conceptual framework for shear flow-induced erosion of soft cohesive sediment beds. J Geophys Res 117(C10):C10020
  • 28. Zreik DA, Krishnappan BG, Germaine JT, Madsen OS, Ladd CC (1998) Erosional and mechanical strengths of deposited cohesive sediments. J Hydraul Eng 124(11):1076–1085
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8acbfa88-9e63-436e-8b0c-f937a5534c60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.