Warianty tytułu
Języki publikacji
Abstrakty
Activated carbon (AC) is one of the best adsorbents for removing trace contaminants from air, soil and water due to its adsorption properties. It is produced from carbon-rich materials, mainly fossil raw materials. However, the price of hard coals has increased significantly in recent years due to the COVID-19 pandemic and the war in Ukraine. The existing eastern markets became blocked for carbon-raw-material sourcing. It is therefore important to find alternative materials or plant-based products. This study investigated the possibility of manufacturing activated carbon from waste biomass such as sugar beet fibers (SBSF), mixed vegetable processing waste (mainly corn) (MVW) and cherry stones (ChS). The raw material was subjected to pyrolysis, milling, granulation, carbonisation and activation at different times and temperatures. However, of the biomass materials tested, only SBSF in the form of marc can be processed into valuable activated carbon in further production steps. MVW and ChS as carbon substrates showed, in addition to high moisture and ash, low efficiency in decolourising molasses and methylene blue MB and also had a lower specific surface area.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
285--302
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
- Faculty of Civil Engineering and Environmental Science, Bialystok University of Technology, ul. Wiejska 45E, 15-354 Białystok, Poland, i.skoczkopb.edu.pl
autor
- Grand-Activated sp. Z.O.O., ul. Białostocka 1, 17-200 Hajnówka, Poland
Bibliografia
- 1. Agbor, V.B., Cicek, N., Sparling, R., Berlin, A., Levin, D.B. 2011, Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv., 29, 675-685.
- 2. Arbeitsbericht der DWA-Arbeitsgruppe KA-8.6. 2016. Aktivkohleeinsatz auf kommunalen Kläranlagen zur Spurenstoffentfernung –Aktivkohleeinsatz auf Kläranlagen, Korrespondenz Abwasser, Abfall 63(12).
- 3. Balan, V., Sousa, L.C., Chundawat, S.P.S., Marshall, D., Sharma, L.N., Chambliss, C.K., Dale, B.E. 2009. Enzymatic diagestibility and pretreatment degradation products of AFEX-treated hardwoods (Populus nigra). Biotechnol. Progr., 25, 365-375.
- 4. Bubanale, S., Shivashankar, M. 2017. History, method of production, structure and applications of activated carbon. International Journal of Engineering Research and Technology, 6(6), 495 – 498.
- 5. Carvalheiro, F., Duarte, L.C., Gírio, F.M. 2008, Hemicellulose Biorefineries: A Review on Biomass Pretreatments. Journal of Scientific & Industrial Research, 67, 849-864.
- 6. Chandel, A.K., Gonҫalves, B.C.M., Strap, J.L., da Silva, S.S. 2015, Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production. Crit. Rev. Biotechnol., 35(3), 281-293.
- 7. Chen, Y., Zhang, X., Chen, W., Yang, H., Chen, H. 2017, The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. Bioresour. Technol., 246, 101–109.
- 8. Correa, C.R., Stollovsky, M., Hehr, T., Rauscher, Y., Rolli, B., Kruse, A. 2017, Influence of the carbonization process on activated carbon properties from lignin and lignin-rich biomasses. ACS Sustain. Chem. Eng.
- 9. Dawood, S., Sen, T.K., Phan, C. 2014. Synthesis and characterisation of novel-activated carbon from waste biomass pine cone and its application in the removal of congo red dye from aqueous solution by adsorption, Water, Air, & Soil Pollution, 225. DOI: 10.1007/s11270-013-1818-4
- 10. Elham, F.M., El-Hashemy, M.A., Abdel-Latif, N.M., Waleed, H. 2015, Production of sugarcane bagasse-based activated carbon for formaldehyde gas removal from potted plants exposure chamber, Journal of the Air & Waste Management Association, 65(12), 1413-1420, DOI: 10.1080/10962247.2015.1100141
- 11. Elham, S.M., Ramin, K. 2015, Adsorption of Thiophenic Compounds by OFG-Tailored Fiber and Activated Carbons, Separation Sc&Tech, 50(13) 1940-1951. DOI: 10.1080/01496395.2015.1015684
- 12. El-Sayed, G., Yehia, M., Asaad, A. 2014. Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid, Water Resources and Industry, 7–8, 66–75. DOI: 10.1016/j.wri.2014.10.001
- 13. Report: Europe Wood Activated Carbon Market Size, Share & Trends Analysis Report By Product (Powdered, Granular), By Application (Food and Beverages, Cosmetics, Healthcare), By Region, And Segment Forecasts, 2021–2028, ID: GVR-4-68039-649-7, 2019.
- 14. Fernandes, A.N., Thomas, L.H., Altaner, C.M., Callow, P., Forsyth, V.T., Apperley, D.C., Kennedy C.J., Jarvis M.C. 2011, Nanostructure of cellulose microfibrils in spruce wood. Proceedings of the National Academy of Sciences of the United States of America, 108, 1195-1203.
- 15. Han, X., He, Y., Zhao, H., Wang, D. 2014, Optimization of preparation conditions of activated carbon from the residue of desilicated rice husk using response surface methodology, Korean Journal of Chemical Engineering, 31(10), 1810-1817. DOI: 10.1007/s11814-014-0103-6
- 16. Hendriks, A.T., Zeeman, G. 2009, Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technol., 100(1), 10-18.
- 17. Iwanow, M. 2022, Biobasierte Trägermaterialien für Katalysatoren – darum lohnen sich auch grüne Alternativen!, Biookonomie, Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, 9.
- 18. Iwanow, M., Gärtner, T., Sieber, V., König, B. 2020, Activated carbon as catalyst support: precursors, preparation, modification, and characterization. Beilstein Journal of Organic Chemistry, 16, 1188–1202.
- 19. Kambo, H.S., Dutta, A. 2015, A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications, Renewable and Sustainable Energy Reviews, 45, 359-378. DOI: 10.1016/J.RSER.2015.01.050 5, 8222-8233.
- 20. Karunanithy, C., Muthukumarappan, K., Julson, J.L. 2008, Influence of high shear bioreactor parameters on carbohydrate release from different biomasses. Conference Paper: Providence, Rhode Island. DOI: 10.13031/2013.24960
- 21. Lee, D., Owens, V.N., Boe, A., Jeranyama, P. 2007, Composition of herbaceous biomass feedstocks, South Dakota State University Publication, SGINC1-07, Brookings, SD.
- 22. Lillo-Ródenas, M.A., Cazorla-Amorós, D., Linares-Solano, A., Begin, F., Clinicard, C., Rouzaud, J.N. 2004, About reactions occurring during chemical activation with hydroxides. Carbon 42(7), 1305-1310.
- 23. Malini, K., Selvakumar, D., Kumar, N.S. 2023. Activated carbon from biomass: Preparation, factors improving basicity and surface properties for enhanced CO2 capture capacity – A review, Journal of CO2 Utilization, 67, 102318. DOI: 10.1016/j.jcou.2022.102318
- 24. Manocha, S., Manocha, L.M., Joshi, P., Patel, B., Dangi, G., Verma, N. 2013, Activated carbon from biomass, Carbon Materials for Energy Harvesting, Environment, Nanoscience and Technology. AIP Conference Proceedings, 1538(1), 120-123. DOI: 10.1063/1.4810041
- 25. Market Research Report 2022: Europe Activated Carbon Market. Chemicals and Materials, Business Market Insights, 4. https://www.businessmarketin-sights.com/reports/europe-activated-carbon-market
- 26. Marsh, H., Rodríguez-Reinoso, F. 2006. Characterization of activated carbon. In Activated Carbon; Elsevier Science, Ltd. Press: Oxford, UK.
- 27. Mohamed, E.F. et al. 2015. Production of sugarcane bagasse-based activated carbon for formaldehyde gas removal from potted plants exposure chamber. J. Air Waste Manag. Assoc., 65(12), 1413–1420.
- 28. Mohamed, F., Shaban, M., Zaki, S.K. et al. 2022, Activated carbon derived from sugarcane and modified with natural zeolite for efficient adsorption of methylene blue dye: experimentally and theoretically approaches. Sci Rep, 12, 18031. DOI: 10.1038/s41598-022-22421-8
- 29. Mosier, N., Wyman, C.E., Dale, B.D., Elander, R.T., Lee, Y.Y., Holtzapple, M., Ladisch, C.M. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol., 96, 673-686.
- 30. Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R.L., Duarte, A.R.C. 2014, Natural deep eutectic solvents - Solvents for the 21st century., ACS Sustainable Chemistry & Engineering, 2, 1063.
- 31. Pedersen, M., Meyer, A.S. 2009,Influence of substrate particle size and wet oxidation on physical surface structures and enzymatic hydrolysis of wheat straw. Biotechnol. Progrs., 25(2), 399-408.
- 32. Pietrzak, R., Jurewicz, K., Nowicki, P., Babeł, K., Wachowska, H. 2007, Microporous activated carbons from ammoxidised anthraxcite and their capacitance behaviours. Fuel, 86(7), 1086-1092
- 33. Pietrzak, R., Wachowska, H., Nowicki, P., Babeł, K. 2007. Preparation of modified active carbon from brown coal by ammoxidation Fuel Processing Technology, 88(4), 409-415.
- 34. Sharma, G., Naushad, M. 2020, Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: Isotherm and kinetic modelling. Journal of Molecular Liquids, 319, 113025. DOI: 10.1016/j.molliq.2020.113025
- 35. Siipola, V., Tamminen, T., Kalli, A., Lahti, R., Romar, H., Rasa, K., Keskinen, R., Hyvaluoma, J., Hannula, M., Wikberg, H., 2018, Effects of Biomass Type, Carbonization Process, and Activation Method on the Properties of Bio-Based Activated Carbons. BioResources, 13(3), 5976-6002.
- 36. Skoczko, I., Guminski, R. 2020, Research on the Development of Technologies for the Production of Granulated Activated Carbons Using Various Binders. Materials, 13(22), 5180. DOI: 10.3390/ma13225180
- 37. Skoczko, I., Guminski, R., Bos, E., Zglobicka, I. 2021, Impact of chemical activation on selected adsorption features of powdered activated carbon., 243, 165-179. DOI: https://doi.org/10.5004/dwt.2021.27859
- 38. Skoczko, I., Guminski, R. 2022, Use of Sugar Cane Fibers as Raw Material for the Production of Activated Carbon. Environ. Sci. Proc., 18, 3. DOI: 10.3390/environsciproc2022018003
- 39. Sun, Y., Cheng, J.Y. 2002. Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review. Bioresource Technology, 83, 1-11. http://dx.doi.org/10.1016/S0960-8524(01)00212-7
- 40. Torres-Pérez, J., Soria-Serna, L.A., Solache-Ríos, M., McKay, G. 2015. Step carbonization/activation process for carbonaceous material preparation from pecan shells for tartrazine removal and regeneration after saturation”, Adsorption Sc.&Tech., 33, 1-22, DOI: 10.1260/0263-6174.33.10.895
- 41. Vilella, P.C., Lira, J.A., Azevedo, D.C.S., Bastos-Neto, M., Stefanutti, R. 2017. Preparation of biomass-based activated carbons and their evaluation for biogas upgrading purposes. Ind. Crop. Prod., 109, 134-140.
- 42. Werther, J., Saenger, M., Hartge, E.U., Ogada, T., Siagi, Z. 2000. Combustion of agricultural residues, Progress in Energy and Combustion Science, 26(1), 1-27.
- 43. Williams, P.T., Reed, AR. 2006. Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste, Biomass and Bioenergy, 30(2), 144-152. DOI: 10.1016/j.biombioe.2005.11.006
- 44. Yahya, M.A., Muhammad, H.M., Wan, A.A., Wan, Z. 2018, Short review of activated carbon from agricultural waste products, AIP Conf Proc, 1-9.
- 45. Yong, X.G. 2021, Activated carbon from sustainable biomass sources, Journal of Carbon Research, 7(2), 39. https://doi.org/10.3390/c7020039
- 46. Zhao, C., Jiang, E., Chen, A. 2017. Volatile production from pyrolysis of cellulose, hemicellulose and lignin, J. Energy Inst. 90, 902-913.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8a7200cb-edec-45af-8431-e969afdfd01b