Warianty tytułu
Języki publikacji
Abstrakty
In the present paper, we introduce the notion of symmetrically porouscontinuous functions. We investigate some properties of symmetric porouscontinuity and its connections with the notion of porouscontinuity, studied by Borsík and Holos in [2]. We prove that there are 2c symmetrically porouscontinuous functions, which extends results of [1] concerning ρ-upper continuous functions.
Czasopismo
Rocznik
Tom
Strony
141--151
Opis fizyczny
Bibliogr. 5 poz.
Twórcy
autor
- Institute of Mathematics, Pomeranian University in Słupsk, ul. Kozietulskiego 6-7, 76-200 Słupsk, Poland
autor
- Institute of Mathematics, Pomeranian University in Słupsk, ul. Kozietulskiego 6-7, 76-200 Słupsk, Poland
Bibliografia
- [1] M. Bienias, S. Głąb and W. Wilczyński, Cardinality of sets of ρ-upper and p-lower continuous functions, Bull. Soc. Set. Lett. Łódź Ser. Rech. Deform. 64 (2014), 71-80.
- [2] J. Borsík and J. Holos, Some properties of porouscontinuous functions, Math. Slovaca 64 (2014), no. 3, 741-750.
- [3] A. M. Bruckner, R. J. O’Malley and B. S. Thomson, Path derivatives: A unified view of certain generalized derivatives, Trans. Amer. Math. Soc. 283 (1984), 97-125.
- [4] E. P. Dolżenko, Boundary properties of arbitrary functions (in Russian), Math. USSR Izv. 31 (1967), 3-14.
- [5] L. Zajíček, Porosity and σ-porosity, Real Anal. Exchange 13 (1987/88), 314-350.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8a59cd91-30e4-4e13-8ab6-5d7e6087b6e2