Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 18, no. 1 | 127--134
Tytuł artykułu

Multi-molecule imaging and inter-molecular imaging in nuclear medicine

Warianty tytułu
Konferencja
4th Jagiellonian Symposium on Advances in Particle Physics and Medicine, Krakow, 10-15 July 2022
Języki publikacji
EN
Abstrakty
EN
Multi-molecule imaging and inter-molecular imaging are not fully implemented yet, however, can become an alternative in nuclear medicine. In this review article, we present arguments demonstrating that the advent of the Compton positron emission tomography (Compton-PET) system and the invention of the quantum chemical sensing method with double photon emission imaging (DPEI) provide realistic perspectives for visualizing inter-molecular and multi-molecule in nuclear medicine with MeV photon. In particular, the pH change of InCl3 solutions can be detected and visualized in a three-dimensional image by combining the hyperfine electric quadrupole interaction sensing and DPEI. Moreover, chemical states, such as chelating, can be detected through angular correlation sensing. We argue that multi-molecule and chemical sensing could be a realistic stream of research in future nuclear medicine.
Wydawca

Rocznik
Strony
127--134
Opis fizyczny
Bibliogr. 52 poz., rys.
Twórcy
  • Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, Japan, shimazoe@bioeng.t.u-tokyo.ac.jp
  • Kyoto University, Kyoto, Japan
Bibliografia
  • [1] Muehllehner G, Karp, JS. Positron emission tomography. Phys Med Biol 2006;51:R117.
  • [2] Brownell GL, Burnham CA, Wilensky S, Arnonow S, Kaemi H, and Strieder D. New developments in positron scintigraphy and the application of cyclotron-produced positron emitter. In: Medical Radioisotope Scintigraphy IAEA Proceedings of a Symposium 1968. Salzburg, Vienna, Austria, 1968.
  • [3] Shimazoe K, Takahashi H, Kamada K, Yoshikawa A, Kumagai K, Kataoka J, et al. Development of a prototype of time-over-threshold based small animal PET scanner. Nucl Instrum Methods Phys Res A 2014; 753:84-90.
  • [4] Yoshino M, Kamada K, Shoji Y, Yoshikawa A, Shimazoe K, Lipovec A, et al. Development and performance evaluation of time-over-threshold based digital PET (TODPET2) scanner using SiPM/Ce: GAGGarrays for non-invasive measurement of blood RI concentrations. J Instrum 2017;12:C02028.
  • [5] English RJ, Brown, SE. SPECT single photon emission computed tomography: a primer. United States, 1986.
  • [6] Jaszczak RJ, Coleman RE. Single photon emission computed tomography (SPECT). Principles and instrumentation. Invest Radiol 1985;20:897-910.
  • [7] Piston DW, Kremers GJ. Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci 2007;32:407-414.
  • [8] Dutt MG, Childress L, Jiang L, Togan E, Maze J, Jelezko, F, et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 2007;316:1312-1316.
  • [9] Fujisaku T, Tanabe R, Onoda S, Kubota R, Segawa TF, So FTK, et al. pH nanosensor using electronic spins in diamond. ACS Nano 2019;13:11726-11732.
  • [10] Hofman MS, Rodney JH. Changing paradigms with molecular imaging of neuroendocrine tumors. Discov Med 2012;14:71-81.
  • [11] Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First human imaging studies with the EXPLORER total-body PET scanner. J Nucl Med 2019;60:299-303.
  • [12] Moskal P, Kisielewska D, Shopa R, Bura Z, Chhokar J, Curceanu C, et al. Performance assessment of the 2 γpositronium imaging with the total-body PET scanners. EJNMMI Phys 2020;7:1-16.
  • [13] Hijnen NM, de Vries A, Nicolay K, and Grüll H. Dual‐ isotope 111In/177Lu SPECT imaging as a tool in molecular imaging tracer design. Contrast Media Mol Imaging 2012;7:214-222.
  • [14] Nakano T, Sakai M, Torikai K, Suzuki Y, Takeda SI, Noda SE, et al. Imaging of 99mTc-DMSA and 18F-FDG in humans using a Si/CdTe Compton camera. Phys Med Biol 2002;65:05LT01.
  • [15] Berman DS, Kang, X, Tamarappoo B, Wolak A, Hayes SW, Nakazato, R, et al. Stress thallium-201/rest technetium-99m sequential dual isotope high-speed myocardial perfusion imaging. JACC Cardiovasc Imaging 2009;2:273-282.
  • [16] Hsieh PC, Lee IH, Yeh TL, Chen KC, Huang HC, Chen PS, et al. Distribution volume ratio of serotonin and dopamine transporters in euthymic patients with a history of major depression-a dual-isotope SPECT study. Psychiatry Res Neuroimaging 2010;184:157-161.
  • [17] Bellevre D, Manrique A, Legallois D, Bross S, Baavour R, Roth N, et al. First determination of the heartto-mediastinum ratio using cardiac dual isotope (123 IMIBG/99m Tc-tetrofosmin) CZT imaging in patients with heart failure: The ADRECARD study. Eur J Nucl Med Mol Imaging 2015;42:1912-1919.
  • [18] Quintana JC, Blend MJ. The dual-isotope ProstaScint imaging procedure: Clinical experience and staging results in 145 patients. Clin Nucl Med. 2000;25:33.
  • [19] Welling MM, Spa SJ, van Willigen DM, Rietbergen DD, Roestenberg M, Buckle T, et al. In vivo stability of supramolecular host-guest complexes monitored by dual-isotope multiplexing in a pre-targeting model of experimental liver radioembolization. J Control Release 2019;293:126-134.
  • [20] Hendrikx G, Saint-Hubert D, Dijkgraaf I, Bauwens M, Douma K, Wierts R, et al. Molecular imaging of angiogenesis after myocardial infarction by 111 InDTPA-cNGR and 99m Tc-sestamibi dual-isotope myocardial SPECT. EJNMMI Res 2016;5: 1-10.
  • [21] Sakai M, Yamaguchi M, Nagao Y, Kawachi N, Kikuchi M, Torikai K, et al. In vivo simultaneous imaging with 99mTc and 18F using a Compton camera Phys Med Biol 2028;63:205006.
  • [22] Motomura S, Kanayama Y, Hiromura M, Fukuchi T, Ida T, Haba H, et al. Improved imaging performance of a semiconductor Compton camera GREI makes for a new methodology to integrate bio-metal analysis and molecular imaging technology in living organisms. J Anal At Spectrom 2013;28:934-939.
  • [23] Kishimoto A, Kataoka J, Taya T, Tagawa L, Mochizuki S, Ohsuka S, et al. First demonstration of multi-color 3-D in vivo imaging using ultra-compact Compton camera. Sci Rep 2017;7:1-7.
  • [24] Tashima H, Yamaya T. Compton imaging for medical applications. Radiol Phys Technol 2022:1-19.
  • [25] Wagenaar DJ, Zhang J, Kazules T, Vandehei T, Bolle E, Chowdhury S, et al. In vivo dual-isotope SPECT imaging with improved energy resolution. In: 2006 IEEE Nuclear Science Symposium Conference Record 2006: 3821-3826.
  • [26] Ogawa K. Simulation study of triple-energy-window scatter correction in combined Tl-201, Tc-99m SPECT. Ann Nucl Med 1994;8:277-281.
  • [27] Uenomachi M. Shimazoe K, and Takahashi H. Double photon coincidence crosstalk reduction method for multi-nuclide Compton imaging. J Instrum 2022;17:P04001.
  • [28] Andreyev A, Celler A. Dual-isotope PET using positron-gamma emitters. Phys Med Biol 2011;56;4539.
  • [29] González E, Olcott PD, Bieniosek M, Levin CS. Methods for increasing the sensitivity of simultaneous multi-isotope positron emission tomography. In: 2011 IEEE Nuclear Science Symposium Conference Record 2011:3597-3601.
  • [30] Shimazoe K, Yoshino M, Ohshima Y, Uenomachi M, Oogane K, Orita T, et al. Development of simultaneous PET and Compton imaging using GAGG-SiPM based pixel detectors. Nucl Instrum Methods Phys Res A 2020;954:161499.
  • [31] Peng P, Judenhofer MS, Cherry SR. Compton PET: a layered structure PET detector with high performance. Phys Med Biol 2019;64:10LT01.
  • [32] Thirolf PG, Lang C, Parodi K. Perspectives for highlysensitive PET-based medical imaging using β+γ coincidences. Acta Phys Polon A 2015;127:1441-44.
  • [33] Yoshida E, Tashima H, Nagatsu K., Tsuji AB, Kamada K, Parodi K, et al. Whole gamma imaging: a new concept of PET combined with Compton imaging. Phys Med Biol 2020;65:125013.
  • [34] Uenomachi M, Takahashi M, Shimazoe K, Takahashi H, Kamada K, Orita T, et al. Simultaneous in vivo imaging with PET and SPECT tracers using a Compton-PET hybrid camera. Sci Rep 2021;11:1-11.
  • [35] Ogane K, Uenomachi M, Shimazoe K, Takahashi M, Takahashi H, Seto Y, et al. Simultaneous measurements of single gamma ray of 131I and annihilation radiation of 18F with Compton PET hybrid camera. App Radiat Isot 2021;176:109864.
  • [36] Caravaca J, Huh Y, Gullberg GT, Seo Y. Compton and proximity imaging of 225Ac in vivo with a CZT gamma camera: a proof of principle with simulations. IEEE Trans Radiat Plasma Med Sci, in press.
  • [37] Yoshihara Y, Shimazoe K, Mizumachi Y, Takahashi H. Evaluation of double photon coincidence Compton imaging method with GEANT4 simulation. Nucl Instrum Methods Phys Res A 2017;873:51-55.
  • [38] Uenomachi M, Mizumachi Y, Yoshihara Y, Takahashi H, Shimazoe K, Yabu G, et al. Double photon emission coincidence imaging with GAGG-SiPM Compton camera. Nucl Instrum Methods Phys Res A 2020;954:161682.
  • [39] Zhihong Z, Shimazoe K, Takahashi H. Characterization of time-of-flight double-photon Compton imaging system by simulation. J Instrum 2022;17:C01045.
  • [40] Orita T, Yabu G, Yoneda H, Takeda SI, Caradonna P, Takahashi T, et al. Double-photon emission imaging with high-resolution Si/CdTe Compton cameras. IEEE Trans Nucl Sci 2021;68(8):2279-2285.
  • [41] Yoshihara Y, Shimazoe K, Mizumachi Y, Takahashi H, Kamada K, Takeda A, et al. Development of electrontracking Compton imaging system with 30-μm SOI pixel sensor. J Instrum 2017;12:C01045.
  • [42] Shimazoe, K., et al. "Electron Pattern Recognition using trigger mode SOI pixel sensor for Advanced Compton Imaging." Journal of Instrumentation 11.02 (2016): C02030.
  • [43] Shimazoe K, Uenomachi M, Mizumachi Y, Takahashi H, Masao Y, Shoji Y, et al. Double photon emission coincidence imaging using GAGG-SiPM pixel detectors. J Instrum 2017;12;C12055.
  • [44] Uenomachi M, Shimazoe K, Ogane K, Takahashi H. Simultaneous multi-nuclide imaging via double-photon coincidence method with parallel hole collimators. Sci Rep 2021;11:1-11.
  • [45] Liu X, Liu H, Cheng L, Wu J, Bao T, Yao R, et al. A 3- dimensional stationary cascade gamma-ray coincidence imager. Phys Med Biol 2021;66:225001.
  • [46] Moskal P. Positronium imaging. In: 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). Manchester, UK: IEEE Xplore; 2020.
  • [47] Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, et al. Positronium imaging with the novel multiphoton PET scanner. Sci Adv 2021;7:eabh4394.
  • [48] Moskal P, Gajos A, Mohamme M, Chhokar J, Chug, N, Curceanu C, et al. Testing CPT symmetry in orthopositronium decays with positronium annihilation tomography. Nature communications, 2021;12(1):1-9.
  • [49] Moskal P, & Stępień E. Prospects and clinical perspectives of total-body PET imaging using plastic scintillators. PET clinics, 2020;15(4):439-452.
  • [50] Steffen RM, Frauenfelder H. Alpha, beta, and gamma-ray spectroscopy, Siegbahn, K. Chapter 19 997, Amsterdam: North-Holland, 1968.
  • [51] Shimazoe K, Uenomachi M, Takahashi H. Imaging and sensing of pH and chemical state with nuclear-spincorrelated cascade gamma rays via radioactive tracer. Commun Phys 2022;5:1-8.
  • [52] Sensui, Fumiki, et al. Measurement of angular correlation changes in double-photon emission nuclides using ultrasound irradiation” JINST accepted 2022.
Uwagi
Opublikowane przez Sciendo.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8a44bbfe-c4f7-45aa-bcc8-ec940db31358
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.