Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 17, nr 2(52) | 41--54
Tytuł artykułu

SEM and EDS Characterization of Porous Coatings Obtained On Titaniumby Plasma Electrolytic Oxidation in Electrolyte Containing Concentrated Phosphoric Acid with Zinc Nitrate

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The SEM and EDS results of porous coatings formed on pure titanium by Plasma Electrolytic Oxidation (Micro Arc Oxidation) under DC regime of voltage in the electrolytes containing of 500 g zinc nitrate Zn(NO3)2·6H2O in 1000 mL of concentrated phosphoric acid H3PO4 at three voltages, i.e. 450 V, 550 V, 650 V for 3 minutes, are presented. The PEO coatings with pores, which have different shapes and the diameters, consist mainly of phosphorus, titanium and zinc. The maximum of zinc-to-phosphorus (Zn/P) ratio was found for treatment at 650 V and it equals 0.43 (wt%) | 0.20 (at%), while the minimum of that coefficient was recorded for the voltage of 450 V and equaling 0.26 (wt%) | 0.12 (at%). Performed studies have shown a possible way to form the porous coatings enriched with zinc by Plasma Electrolytic Oxidation in electrolyte containing concentrated phosphoric acid H3PO4 with zinc nitrate Zn(NO3)2·6H2O.
Wydawca

Rocznik
Strony
41--54
Opis fizyczny
Bibliogr. 60 poz., rys., wykr., tab.
Twórcy
autor
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Department of Engineering and Informatics Systems, Division of Bioengineering and Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland, rokosz@tu.koszalin.pl
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Department of Engineering and Informatics Systems, Division of Bioengineering and Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland
autor
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Department of Engineering and Informatics Systems, Division of Bioengineering and Surface Electrochemistry, Racławicka 15-17, 75-620 Koszalin, Poland
autor
  • Hochschule Wismar-University of Applied Sciences Technology, Business and Design, Faculty of Engineering, D 23966 Wismar, Germany
Bibliografia
  • 1. Hryniewicz T., Physico-chemical and technological foundations of electropolishing of steels (in Polish), 1989, Monograph No. 26, ed. Koszalin University of Technology Publishing, ISSN 0239-7129.
  • 2. Hryniewicz T., Hryniewicz Z. On the solution of equation of diffusion in electropolishing, Journal of the Electrochemical Society,136(12) (1989),3767-3769.
  • 3. Hryniewicz T., Concept of microsmoothing in the electropolishing process, Surface and Coatings Technology, 64(2) (1994), 75-80.
  • 4. Rokicki R., Hryniewicz T., Enhanced oxidation-dissolution theory of electropolishing, Transactions of The Institute of Metal Finishing, 90(4) (2012), 188-196.
  • 5. Hryniewicz T., Rokosz K., ZschommlerSandim HR., SEM/EDX and XPS studies of niobium after electropolishing, Applied Surface Science, 263 (2012), 357-361.
  • 6. Hryniewicz T., Konarski P., Rokicki R., and Valiček J., SIMS analysis of hydrogen content in near surface layers of AISI 316L SS after electrolytic polishing under different conditions, Surface and Coatings Technology, 205 (2011), 4228-4236.
  • 7. Hryniewicz T., On the surface treatment of metallic biomaterials (in Polish), 2007, Monograph No. 142, ed. Koszalin University of Technology Publishing, ISSN 0239-7129 (155 pages).
  • 8. Rokosz K., Electrochemical polishing in magnetic field (in Polish), 2012, Monograph No. 219, ed. by Koszalin University of Technology Publishing, ISSN 0239-7129, (211 pages).
  • 9. Rokicki R., Hryniewicz T., Rokosz K., Modifying Metallic Implants by Magnetoelectropolishing, Medical Device & Diagnostic Industry, 30(1) (2008), 102-111.
  • 10. Rokicki R., Hryniewicz T., Nitinol surface finishing by magnetoelectropolishing, Transactions of The Institute of Metal Finishing, 86 (2008), 280-285.
  • 11. Rokicki R., Haider W., Hryniewicz T., Influence of Sodium Hypochlorite Treatment of Electropolished and MagnetoelectropolishedNitinol Surfaces on Adhesion and Proliferation of MC3T3 Preosteoblast Cells, Journal of Materials Science: Materials in Medicine, 23 (2012), 2127-2139.
  • 12. Hryniewicz T., Rokicki R., Rokosz K., Co-Cr alloy corrosion behavior after electropolishing and "magnetoelectropolishing" treatments, Surface and Coatings Technology, 62(17-18) (2008), 3073-3076.
  • 13. Hryniewicz T., Rokosz K., Analysis of XPS results of AISI 316L SS electropolished and magnetoelectropolished at varying conditions, Surface and Coatings Technology, 204(16-17) (2010), 2583-2592.
  • 14. Rokosz K., Hryniewicz T., Raaen S., Cr/Fe ratio by XPS spectra of magnetoelectropolished AISI 316L SS fitted by Gaussian-Lorentzian shape lines, TehnickiVjesnik-Technical Gazette, 21(3) (2014), 533-538.
  • 15. Hryniewicz T., Rokicki R., Rokosz K., Magnetoelectropolishing for metal surface modification. Transactions of The Institute of Metal Finishing, 85(6) (2007), 325-332.
  • 16. Hryniewicz T., Rokicki R., Rokosz K., Corrosion and surface characterization of titanium biomaterial after magnetoelectropolishing, Surface and Coatings Technology, 203(9) (2008), 1508-1515.
  • 17. Hryniewicz T., Rokosz K., Polarization characteristics of magnetoelectropolishing stainless steels, Materials Chemistry and Physics, 122(1) (2010), 169-174.
  • 18. Hryniewicz T., Rokicki R., Rokosz K., Chapter 11. Magnetoelectropolished Titanium Biomaterial, in Biomaterial/Book 2, InTech, ISBN 978-953-307-609-6, (2011), 227-248.
  • 19. Hryniewicz T., Konarski P., Rokicki R., Valiček J., SIMS studies of titanium biomaterial hydrogenation after magnetoelectropolishing, Surface and Coatings Technology, 206 (2012), 4027-4031.
  • 20. Rokosz K. Hryniewicz T., Effect of magnetic field on the pitting corrosion of austenitic steel type AISI 304, OchronaprzedKorozją, 54(7) (2011), 487-491.
  • 21. Rokosz K., Hryniewicz T., Raaen S., Characterization of passive film formed on AISI 316L stainless steel after magnetoelectropolishing in a broad range of polarization parameters, Steel Research International. 83(9) (2012), 910–918.
  • 22. Hryniewicz T., Rokosz K., Investigation of selected surface properties of AISI 316L SS after magnetoelectropolishing, Materials Chemistry and Physics, 123(1) (2010), 47-55.
  • 23. Hryniewicz T., Rokosz K., Rokicki R., Magnetic Fields for Electropolishing Improvement: Materials and Systems. International Letters of Chemistry, Physics and Astronomy, 4 (2014), 98-108.
  • 24. Hryniewicz T., Rokosz K., Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial, Anti-Corrosion Methods and Materials, 61(2) (2014), 57-64.
  • 25. Hryniewicz T., Rokosz K., Valiček J., Rokicki R., Effect of magnetoelectropolishing on nanohardness and Young’s modulus of titanium biomaterial, Materials Letters, 83 (2012), 69-72.
  • 26. Hryniewicz T., Rokosz K., Rokicki R., Prima F., Nanoindentation and XPS Studies of Titanium TNZ Alloy after Electrochemical Polishing in a Magnetic Field, Materials, 8 (2015), 205-215.
  • 27. Rokosz K., Hryniewicz T., XPS measurements of LDX 2101 duplex steel surface after magnetoelectropolishing, International Journal of Materials Research, 104(12) (2013), 1223-1232.
  • 28. Rokosz K., Hryniewicz T., XPS Analysis of nanolayers obtained on AISI 316L SS after Magnetoelectropolishing, World Scientific News, 37 (2016), 232-248.
  • 29. Rokicki R., Hryniewicz T., Konarski P., Rokosz K., The alternative, novel technology for improvement of surface finish of SRF niobium cavities, World Scientific News, 74 (2017), 152-163.
  • 30. Rokosz K., Hryniewicz T., Simon F., Rzadkiewicz S., Comparative XPS analysis of passive layers composition formed on AISI 304 L SS after standard and high-current density electropolishing, Surface and Interface Analysis, 47(1) (2015), 87-92.
  • 31. Rokosz K., Lahtinen J., Hryniewicz T., Rzadkiewicz S., XPS depth profiling analysis of passive surface layers formed on austenitic AISI 304L and AISI 316L SS after high-current-density electropolishing, Surface and Coatings Technology, 276 (2015), 516-520.
  • 32. Rokosz K., Hryniewicz T., Simon F., Rzadkiewicz S., Comparative XPS analyses of passive layers composition formed on duplex 2205 SS after standard and high-current-density electropolishing, Tehničkivjesnik - Technical Gazette, 23(3) (2016), 731-735.
  • 33. Gnedenkov S.V., Sharkeev Y.P., Sinebryukhov S.L., Khrisanfova O.A., Legostaeva E.V., Zavidnaya A.G., Puz’ A.V., Khlusov I.A., Opra D.P., Functional coatings formed on the titanium and magnesium alloys as implant materials by plasma electrolytic oxidation technology: fundamental principles and synthesis conditions, Corrosion Review, 34(1-2) (2016), 65-83.
  • 34. Simka W., Sadowski A., Warczak M., Iwaniak A., Dercz G., Michalska J., Maciej A., Modification of titanium oxide layer by calcium and phosphorus, ElectrochimicaActa, 56(24) (2011), 8962-8968.
  • 35. Han Y., Hong S.H., Xu K.W., Synthesis of nanocrystallinetitania films by micro-arc oxidation, Materials Letters, 56 (2002), 744-747.
  • 36. Han Y., Hong S.H., Xu K.W., Structure and in vitro bioactivity of titania-based films by microarc oxidation, Surface and Coatings Technology, 168 (2003), 249-258.
  • 37. Fei C., Hai Z., Chen C., Yangjian X., Study on the tribological performance of ceramic coatings on titanium alloy surfaces obtained through microarc oxidation, Progress in Organic Coatings, 64 (2009), 264-267.
  • 38. Aliasghari S., Plasma Electrolytic Oxidation of Titanium, PhD Thesis of Faculty of Engineering and Physical Sciences, The University of Manchester School of Materials, (2014), 223 pages.
  • 39. Teh T.H., Berkani A., Mato S., Skeldon P., Thompson G.E., Habazaki H., Shimizu K., Initial stages of plasma electrolytic oxidation of titanium, Corrosion Science, 45 (2003), 2757-2768.
  • 40. Krzakala A., Mlynski J., Dercz G., Michalska J., Maciej A., Nieuzyla L., Simka W, Modification of Ti-6Al-4V alloy surface by EPD-PEO process in ZrSiO4 suspension, Archives of Metallurgy and Materials, 59(1) (2014), 199-204.
  • 41. Simka W., Nawrat G., Chlode J., Maciej A., Winiarski A., Szade J., Radwanski K., Gazdowicz J., Electropolishing and anodic passivation of Ti6Al7Nb alloy, PrzemysłChemiczny, 90(1) (2011), 84-90.
  • 42. Wang Y., Jiang B., Lei T., Guo L., Dependence of growth features of microarc oxidation coatings of titanium alloy on control modes of alternate pulse, Materials Letters, 58 (2004), 1907-1911.
  • 43. Rokosz K., Hryniewicz T., Raaen S., Development of Plasma Electrolytic Oxidation for improved Ti6Al4V biomaterial surface properties, The International Journal of Advanced Manufacturing Technology, 85 (2016), 2425-2437.
  • 44. Rokosz K., Hryniewicz T., Raaen S., Chapon P., Investigation of porous coatings obtained on Ti-Nb-Zr-Sn alloy biomaterial by Plasma Electrolytic Oxidation: Characterisation and Modelling, The International Journal of Advanced Manufacturing Technology, 87(9) (2016), 3497–3512.
  • 45. Rokosz K., Hryniewicz T., Raaen S., Chapon P., Development of copper-enriched porous coatings on ternary Ti-Nb-Zr alloy by Plasma Electrolytic Oxidation, The International Journal of Advanced Manufacturing Technology, 89(9) (2017), 2953–2965.
  • 46. Rokosz K., Hryniewicz T., Characteristics of porous and biocompatible coatings obtained on Niobium and Titanium-Niobium-Zirconium (TNZ) alloy by Plasma Electrolytic Oxidation, Mechanik, 12 (2015),15-18.
  • 47. Rokosz K., Hryniewicz T., Dudek Ł., Matysek D., Valiček J., Harničarova M., SEM and EDS Analysis of Surface Layer Formed on Titanium After Plasma Electrolytic Oxidation in H3PO4 with the Addition of Cu(NO3)2, Journal of Nanoscience and Nanotechnology, 16(8) (2016), 7814-7817.
  • 48. Rokosz K,, Hryniewicz T,, Dalibor M,, Raaen S,, Valiček J,, Dudek Ł,, Harničarova M., SEM, EDS and XPS Analysis of the Coatings Obtained on Titanium after Plasma Electrolytic Oxidation in Electrolytes Containing Copper Nitrate, Materials, 9(5) (2016), 1-12.
  • 49. Rokosz K., Hryniewicz T., Raaen S., Chapon P., Dudek Ł., GDOES, XPS and SEM with EDS analysis of porous coatings obtained on Titanium after Plasma Electrolytic Oxidation, Surface and Interface Analysis, 49(4) (2016), 303-315.
  • 50. Rokosz K., Hryniewicz T., Chapon P., Dudek Ł., A new approach to porous PEO coating sublayers determination on the basis of GDOES signals, World Scientific News, 57 (2016), 289-299.
  • 51. Rokosz K., Hryniewicz T., Chapon P., Raaen S., ZschommlerSandim H.R., XPS and GDOES characterisation of porous coating enriched with copper and calcium obtained on Tantalum via Plasma Electrolytic Oxidation, Journal of Spectroscopy, Article ID 7093071 (2016) (7 pages); http://dx.doi.org/10.1155/2016/7093071
  • 52. Rokosz K., Hryniewicz T., Malorny W., Characterisation of porous coatings obtained on materials by Plasma Electrolytc Oxidation, Materials Science Forum, 862 (2016), 86-95.
  • 53. Rokosz K., Hryniewicz T., Raaen S., SEM, EDS and XPS analysis of nanostructured coating obtained on NiTi biomaterial alloy by Plasma Electrolytic Oxidation (PEO), Tehničkivjesnik-Technical Gazette, 24(1) (2017), 193-198.
  • 54. Rokosz K., Hryniewicz T., Raaen S., Chapon P., Development of copper-enriched porous coatings on ternary Ti-Nb-Zr alloy by Plasma Electrolytic Oxidation, The International Journal of Advanced Manufacturing Technology, 89(9-12) (2017), 2953–2965; DOI 10.1007/s00170-016-9206-z
  • 55. Rokosz K., Hryniewicz T., Comparative SEM and EDX analysis of surface coatings created on niobium and titanium alloys after Plasma Electrolytic Oxidation (PEO). Tehničkivjesnik-Technical Gazette, 24(2) (2017), 465-472.
  • 56. Rokosz K., Hryniewicz T., Raaen S., Malorny W., Fabrication and characterisation of porous coatings obtained by plasma electrolytic oxidation, Journal of Mechanical and Energy Engineering, 1(1|41) (2017), 23-30.
  • 57. Kusnerova M., Rokosz K., Kusnerova M., Barcova K., Brazina D., Noncontact method for surface roughness measurement after machining, Measurement Science Review, 12(5) (2012), 184–88; DOI:10.2478/v10048-012-0028-3
  • 58. Kusnerova M, Valiček J., Harničarova M., Hryniewicz T., Rokosz K., Palkova Z., Vaclavik V., Repka M., Bendova M., A proposal for simplifying the method of evaluation of uncertainties in measurement results, Measurement Science Review, 13(1) (2013), 1-6; DOI:10.2478/msr-2013-0007
  • 59. EN ISO 4287:(1999) Geometrical product specifications (GPS)—surface texture: profile method—terms, definitions and surface texture parameters. International Organization for Standarization.
  • 60. DIN 4768:(1990) Determination of values of surface roughness parameters Ra, Rz, Rmax using electrical contact (stylus) instruments; concepts and measuring conditions.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8a00de8f-4d1a-48c8-88b4-c5619f6d010d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.