Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 26, nr 2 | 69--76
Tytuł artykułu

UV irradiation grafting of butyl acrylate on polyimide membrane for enhanced lubricant solvent recovery

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As one single membrane material could not fulfill the requests of chemical stability, mechanical strength, and resistance to pollution in practical applications. Modifications of the membrane to improve its separation performance were of great significance. In this study, UV irradiation grafting modification was employed and butyl acrylate was selected as a modification monomer for polyimide membrane to improve its lipophilicity and separation efficiency in lubricant solvent recovery. And effects of monomer concentration, irradiation distance, and grafting time on the grafting results and separation properties of modified polyimide membranes were investigated. The results exhibited that modified polyimide membranes obtained an enhanced lubricant retention rate compared with raw membranes, which increased from 66.5% to 93.1%. The industrial test for 40 days proved the great stability of modified polyimide membranes. Overall, this work confi rmed the good industrial utilization potential of modified polyimide membranes and offered an effective way for lubricant solvent recovery.
Wydawca

Rocznik
Strony
69--76
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wz.
Twórcy
autor
  • School of Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, 257100, China
autor
  • School of Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, 257100, China , shlouc@126.com
  • College of Chemical Engineering, China University of Petroleum (East China), Qingdao Shandong 266580, China
autor
  • School of Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, 257100, China
  • Shandong Academy of Pesticide Sciences, Jinan 250000, China
Bibliografia
  • 1. Yuan, B., Cao, M., Sun, H., Wang, T., Bu, X., Shi, D., Kong, Y. & Li, P. (2014). Preparation of a Polyimide Nanofiltration Membrane for Lubricant Solvent Recovery. J. Appl. Polymer Sci. 131(15) 1–8. DOI:10.1002/40338.
  • 2. Baig, U., Faiza, M.N. & Dastageer, M. (2021). Polyimide based super-wettable membranes/materials for high performance oil/water mixture and emulsion separation: A review. Adv. Colloid Interf. Sci. 297, 102525. DOI: 10.1016/j.cis.2021.102525.
  • 3. Firman, L.R., Ochoa, N.A., Marchese, J. & Pagliero, C.L. (2013). Deacidification and solvent recovery of soybean oil by nanofiltration membranes. J. Membrane Sci. 431, 187–196. DOI: 10.1016/j.memsci.2012.12.040.
  • 4. Favvas, E.P., Katsaros, F.K., Papageorgiou, S.K., Sapalidis, A.A. & Mitropoulos, A.C. (2017). A review of the latest development of polyimide based membranes for CO2 separations. React. Functional Polym. 120, 104–130. DOI: 10.1016/j.reactfunctpolym.2017.09.002.
  • 5. Zhu, H., Chen, K., Sun, G., Zhao, W., Jiang, Q. & Xiao, C. (2023). Robust design of durable PTFE/graphene hollow fiber composite membrane for high-temperature lubricant recycling. J. Water Proc. Engin. 55, 1–10. DOI: 10.1016/j.jwpe.2023.104163.
  • 6. Liu, M., Shen, L., Wang, J., Ding, Y., Zhou, Y. & Liu, F. (2022). Continuous separation and recovery of high viscosity oil from oil-in-water emulsion through nondispersive solvent extraction using hydrophobic nanofibrous poly(vinylidene fluoride) membrane. J. Membrane Sci. 660, 1–8. DOI: 10.1016/j.memsci.2022.120876.
  • 7. Tanudjaja, H.J., Hejase, C.A., Tarabara, V.V., Fane, A.G. & Chew, J.W. (2019). Membrane-based separation for oily wastewater: A practical perspective. Water Res. 156, 347–365. DOI: 10.1016/j.watres.2019.03.021.
  • 8. Palanisamy, T., Tabatabai, S., Zhang, T. & Leiknes, T. (2021). Role of surfactants in cleaning of PVDF ultrafiltration membranes fouled by emulsified cutting oil. J. Water Process Engin. 40, 1–9. DOI: 10.1016/j.jwpe.2021.101923.
  • 9. Nadeem, A.K., Awais, B., Muhammad, M., Jiří, J.K., Rachida, E., Roohul, A.K., Majed, A., Mudassar, A., Sidra, S., Ahmad, M., Apurav, K. & Pau, L.S. (2022). Treatment of Hospital wastewater with submerged aerobic fixed film reactor coupled with tube-settler. Chemosphere, 286. DOI: 10.1016/j.chemosphere.2021.131838.
  • 10. Alsubih, M., morabet, R.E., Khan, R.A., Khan, N., Khan, A. & Sharma, G. (2021). Performance evaluation of aerobic fluidized bed bioreactor coupled with tube-settler for hospital wastewater treatment. J. Environ. Chem. Engin. 9(5). DOI: 10.1016/j.jece.2021.105896.
  • 11. Saadati, J. & Pakizeh, M. (2017). Separation of oil/water emulsion using a new PSf/pebax/F-MWCNT nanocomposite membrane. J. Taiwan Instit. Chem. Engin. 71, 265–276. DOI: 10.1016/j.jtice.2016.12.024.
  • 12. Rouquié, C., Szymczyk, A., Rabiller-Baudry, M., Roberge, H., Abellán, P., Riaublanc, A., Frappart, M., Álvarez-Blanco, S. & Couallier, E. (2022). NaCl precleaning of microfiltration membranes fouled with oil-in-water emulsions: Impact on fouling dislodgment. Separ. Purific. Technol. 285, 1–14. DOI: 10.1016/j.seppur.2021.120353.
  • 13. Xin, Y. & Yin, F. (2021). A combined experimental and molecular simulation study of lube oil dewaxing solvent recovery using membrane. Separ. Purific. Technol. 261, 1–12. DOI: 10.1016/j.seppur.2020.118278.
  • 14. Liu, Y., Sun, W., Feng, K., Wu, Y., Yu, B., Liu, S. & Zhou, F. (2023). Sebaceous gland-inspired self-lubricated de-icing coating by continuously secreting lubricants. Progress in Organic Coatings, 174, 1–7. DOI: 10.1016/j.porgcoat.2022.107311.
  • 15. Huang, Y., Xu, M., Guo, Q., Xie, W., Shu, J., Du, X., Qiu, F., Huang, S. & Huang, Q. (2023). A robust and environmental-friendly strategy for preparation of PTFE membranes with high separation accuracy and sequential separation performance. J. Environ. Chem. Engin. 11(3), 1–14. DOI:10.1016/j.jece.2023.110310.
  • 16. Dmitrenko, M., Kuzminova, A., Zolotarev, A., Markelov, D., Komolkin, A., Loginova, E., Plisko, T., Burts, K., Bildyukevich, A. & Penkova, A. (2022). Modification strategies of polyacrylonitrile ultrafiltration membrane using TiO2 for enhanced antifouling performance in water treatment. Separ. Purific. Technol. 286, 1–13. DOI: 10.1016/j.seppur.2022.120500.
  • 17. Gan, G., Fan, S,. Li, X., Zhang, Z. & Hao, Z. (2023). Adsorption and membrane separation for removal and recovery of volatile organic compounds. J. Environ. Sci. (China), 123, 96–115. DOI:10.1016/j.jes.2022.02.006.
  • 18. Huang, T.Y., Jia, S.H., Goh, S. & Chong, T.H. (2021). Ethanol recovery from dilute aqueous solution by perstraction using supported ionic liquid membrane (SILM). J. Cleaner Produc. 298, 1–10. DOI: 10.1016/j.jclepro.2021.126811.
  • 19. Sawatdiruk, S., Charoensuppanimit, P., Faungnawakij, K. & Klaysom, C. (2021). POSS/PDMS composite pervaporation membranes for furfural recovery. Separ. Purific. Technol., 278, 1-10. DOI: 10.1016/J.SEPPUR.2021.119281.
  • 20. Singh, P., Manikandan, N., Purnima, M., Pakshirajan, K. & Pugazhenthi, G. (2020). Recovery of lignin from water and methanol using low-cost kaolin based tubular ceramic membrane. J. Water Proc. Engin. 38, 1–11. DOI: 10.1016/J.JWPE.2020.101615.
  • 21. Tashvigh, A. & Chung, T.S. (2019). Robust polybenzimidazole (PBI) hollow fiber membranes for organic solvent nanofiltration. J. Membrane Sci. 572, 580–587. DOI: 10.1016/j.memsci.2018.11.048.
  • 22. Koncsag, C. & Kirwan, K. (2012). A membrane screening for the separation/concentration of dilignols and trilignols from solvent extracts. Separ. Purific. Technol. 94, 54–60. DOI: 10.1016/J.SEPPUR.2012.04.009.
  • 23. Paseta, L., Luque-Alled, J.M., Malankowska, M., Navarro, M. & Téllez, C. (2020). Functionalized graphene-based polyamide thin film nanocomposite membranes for organic solvent nanofiltration. Separ. Purific. Technol. 247, 1–9. DOI: 10.1016/j.seppur.2020.116995.
  • 24. Zhang, Y., Xu, P., Chen, X., Qiu, M. & Fan, Y. (2022). Preparation of high permeance thin-film composite nanofiltration membrane on macroporous ceramic support. J. Membrane Sci., 663, 1–11. DOI: 10.1016/j.memsci.2022.121076.
  • 25. Yu, Q., Zhu, J., Gong, G., Yu, L., Hu, Y. & Li, J. (2023). Efficient preparation of ultrathin ceramic wafer membranes for the high-effective treatment of the oilfield produced water. Separ. Purific. Technol. 308 1–13. DOI: 10.1016/j.seppur.2022.122720.
  • 26. Suárez, L., Diez, MA., García, R. & Riera, FA. (2012). Membrane technology for the recovery of detergent compounds: A review. J. Ind. Engin. Chem. 18, (6), 1859–1873. DOI: 10.1016/J.JIEC.2012.05.015.
  • 27. Dashtbozorg, A., Saljoughi, E., Mousavi, S.M. & Kiani, S. (2022). High-performance and robust polysulfone nanocomposite membrane containing 2D functionalized MXene nanosheets for the nanofiltration of salt and dye solutions. Desalination, 527, 1–13. DOI: 10.1016/j.desal.2022.115600.
  • 28. Fu, W., Liu, Y., Liu, J., Zhang, B., Cheng, J., Du, R., Sun, M., Zhao, Y. & Che, L. (2023). A TiO2 modified whisker mullite hollow fiber ceramic membrane for high-efficiency oil/water emulsions separation. J. European Ceramic Soc. 43(10), 4451–4461. DOI: 10.1016/j.jeurceramsoc.2023.03.029.
  • 29. Silva, A., Silva, J.D., Vicente, R., Ambrosi, A., Zin, G., Luccio, M.D. & Oliveira, Jd. (2023). Recent advances in surface modification using polydopamine for the development of photocatalytic membranes for oily wastewater treatment. J. Water Proc. Engin. 53, 1-20. DOI: 10.1016/j.jwpe.2023.103743.
  • 30. Obidara, T., Azeem, M., Lawal, D., Alfaraj, M., Abdulhamid, M. & Baroud, T. (2023). Novel hexa-fluorinated intrinsically porous polyimide membranes for the desalination of high saline water by air-gap membrane distillation. Desalination, 566. DOI: 10.1016/j.desal.2023.116948.
  • 31. Arefi-Oskoui, S., Khataee, A., Safarpour, M. & Vatanpour, V. (2020). Modification of polyethersulfone ultrafiltration membrane using ultrasonic-assisted functionalized MoS2 for treatment of oil refinery wastewater. Separ. Purific. Technol. 238, 1–13. DOI: 10.1016/j.seppur.2019.116495.
  • 32. Li, W., Musa, DAR., Ahmad, N., Adil, M., Altimari, U.S., Ibrahim, A.K., Alshehri, A.M., Riyahi, Y., Jaber, A.S., Kadhim, SI., Rushchitc, A. & Aljuaid, M.O. (2023). Comprehensive review on the efficiency of ionic liquid materials for membrane separation and environmental applications. Chemosphere, 332, 138826–138835. DOI: 10.1016/j.chemosphere.2023.138826.
  • 33. Gu, Y., Zhang, B., Fu, Z., Li, J., Yu, M., Li, L. & Li, J. (2021). Poly (vinyl alcohol) modification of poly (vinylidene fluoride) microfiltration membranes for oil/water emulsion separation via an unconventional radiation method. J. Membrane Sci. 619, 1–10. DOI: 10.1016/J.MEMSCI.2020.118792.
  • 34. Kayanja, O., Hassan, M.A., Hassanin, A., Ohashi, H. & Khalil, A. (2023). Effect of phase disparity of MoS2 nanosheets on the performance of PES membranes for dual industrial oilin-water emulsion separation and dyes adsorption. Process Safety Environ. Protec. 171, 55–70. DOI: 10.1016/j.psep.2023.01.014.
  • 35. Liu, D., Cao, J., Qiu, M., Zhang, G. & Hong, Y. (2022). Enhanced properties of PVDF nanofibrous membrane with liquid-like coating for membrane distillation. Separ. Purific. Technol. 295, 1–10. DOI: 10.2139/ssrn.4002098.
  • 36. Zhuge, Y. & Liu, F. (2023). Controlled preparation of polyimide/polysulfone amide (PI/PSA) porous micro-nano fiber membranes by microemulsion electrospinning for excellent thermal insulation. Europ. Polymer J. 194. DOI: 10.1016/j.eurpolymj.2023.112170.
  • 37. Abdulhamid, M.A. & Muzamil, K. (2023). Recent progress on electrospun nanofibrous polymer membranes for water and air purification: A review. Chemosphere, 310, 136886–136907. DOI: 10.1016/j.chemosphere.2022.136886.
  • 38. Feng, X., Yu, Z., Long, R., Sun, Y., Wang, M., Li, X. & Zeng, G. (2020). Polydopamine intimate contacted two-dimensional/two-dimensional ultrathin nylon basement membrane supported RGO/PDA/MXene composite material for oil-water separation and dye removal. Separ. Purific. Technol. 247, 1–16. DOI: 10.1016/j.seppur.2020.116945.
  • 39. Hubadillah, S.K., Jamalludin, M.R., Dzarfan, O.M.H. & Iwamoto, Y. (2022). Recent progress on low-cost ceramic membrane for water and wastewater treatment. Ceramics Internat. 48 (17), 24157–24191. DOI: 10.1016/j.ceramint.2022.05.255.
  • 40. Bessa, L.P., Ferreira, E.D.P., Cardoso, V.L., Reis, M.H.M. (2022). Air-sintered silicon (Si)-bonded silicon carbide (SiC) hollow fiber membranes for oil/water separation. J. Europ. Ceramic Soc. 42 (2), 402–411. DOI: 10.1016/j.jeurceramsoc.2021.08.025.
  • 41. Ye, Z., Wang, L., Sun, W., Hu, Y. & Tang, H. (2020). Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: A comprehensive review. J. Ind. Engin. Chem. 81, 7–23. DOI: 10.1016/j.jiec.2019.09.002.
  • 42. Ihsanullah, I. & Bilal, M. (2022). Recent advances in the development of MXene-based membranes for oil/water separation: A critical review. Appl. Mater. Today, 29, 1–18. DOI: 10.1016/j.apmt.2022.101674.
  • 43. Zuo, C., Wang, L., Tong, Y., Shi, L., Ding, W. & Li, W. (2021). Co-deposition of pyrogallol/polyethyleneimine on polymer membranes for highly efficient treatment of oil-in-water emulsion. Separ. Purific. Technol. 267, 1–11. DOI: 10.1016/J.SEPPUR.2021.118660.
  • 44. Ullah, A., Tanudjaja, H.J., Ouda, M., Hasan, S. & Chew, J. (2021). Membrane fouling mitigation techniques for oily wastewater: A short review. J. Water Proc. Engin. 43, 1–14. DOI: 10.1016/j.jwpe.2021.102293.
  • 45. Hu, C., Fang, J., Jeng, R., Wu, C., Huang, Y., Sun, Y., Le, Ke. & Lai, J. (2023). Construction of transfer-free regular through-pore polyimide composite microfiltration membranes via amphiphilic dendron-assisted breath-figure method for water treatment. Separ. Purific. Technol. 327. DOI: 10.1016/j.seppur.2023.124981.
  • 46. Liu, L., Liu, S., Wang, E., Dong, Q., Li, H. & Su, B. (2024). Constructing a tannic-Fe interlayer via a simple in-situ method to enhance the filtration performance of hollow fiber organic solvent nanofiltration membranes. J. Membrane Sci. 691. DOI: 10.1016/j.memsci.2023.122250.
  • 47. Salahi, A., Mohammadi, T., Behbahani, R. & Hemmati, M. (2015). Asymmetric polyethersulfone ultrafiltration membranes for oily wastewater treatment: Synthesis, characterization, ANFIS modeling, and performance. J. Environ. Chem. Engin. 3(1), 170–178. DOI:10.1016/J.JECE.2014.10.021.
  • 48. Fang, Y., Zhu, C., Yang, H., Zhang, C. & Xu, Z. (2024). Polyamide nanofiltration membranes by vacuum-assisted interfacial polymerization: Broad universality of Substrate, wide window of monomer concentration and high reproducibility of performance. J. Colloid Interf. Sci. 655, 327–334. DOI: 10.1016/j.jcis.2023.11.002.
  • 49. Hazarika, B., Ahmaruzzaman, M., Santosh, M.S., Barceló, D. & Rtimi, S. (2023). Advances in polymer-based nanocomposite membranes for water remediation: Preparation methods, critical issues and mechanisms. J. Environ. Chemical Engin. 11(6). DOI: 10.1016/j.jece.2023.111401.
  • 50. Cui, Y. & Chung, T. (2018). Pharmaceutical concentration using organic solvent forward osmosis for solvent recovery. Nature Commun. 9(1), 1–8. DOI: 10.1038/s41467-018-03612-2.
  • 51. Gong, X., Zhang, L., Liu, Y. & Zhu, M. (2023). A review on zeolitic imidazolate framework-8 based materials with special wettability for oil/water separation. J. Environ. Chem. Engin. 11 (6). DOI: 10.1016/j.jece.2023.111360.
  • 52. Pham, Q., Goudeli, E. & Scholes, C. (2023). Selective separation of water and methanol from hydrogen and carbon dioxide at elevated temperature through polyimide and polyimidazole based membranes. J. Membrane Sci. 686. DOI: 10.1016/j.memsci.2023.121990.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-89db8dae-7c51-46f1-9822-de7bbcf112bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.