Warianty tytułu
Borowanie gazowe stopu Inconel 600
Języki publikacji
Abstrakty
The excellent resistance of Ni-based alloys to corrosion and oxidation has led them being used wherever corrosive media or high temperature are to be expected. However, if Ni-based alloys have to be applied under conditions of appreciable mechanical wear (adhesive or abrasive), these materials require suitable wear protection. Gas boriding in N2-H2-BCl3 atmosphere was proposed to formation of boride layers on Inconel 600 alloy. The process consisted in two stages, which were alternately repeated: saturation by boron and diffusion annealing. During first step BCl3 was added to N2-H2 atmosphere. Second step consisted in diffusion annealing while an addition of BCl3 was switched off. The process proved to be more economical in BCl3 consumption. The microstructure and some properties of produced layer were studied. Proposed gas boriding accelerated the diffusion of boron into the surface in comparison with other acceptable diffusion methods. The comparable thickness of boride layer was obtained after considerably shorter duration. X-ray microanalysis indicated the increased boron concentration in the layer. The occurrence of nickel borides (Ni2B, Ni3B and Ni4B3) as well as chromium or iron borides was expected in the boride layer. The significant improvement of hardness (up to 1400÷2200 HV) and abrasive wear resistance was observed as a consequence of gas boriding.
Bardzo dobra odporność stopów niklu na korozję i utlenianie pozwala stosować je wszędzie tam, gdzie jest spodziewane agresywne środowisko lub wysoka temperatura. Jednak stosowanie tych stopów w warunkach znacznego zużycia mechanicznego (adhezyjnego lub ściernego) wymaga odpowiedniego zabezpieczenia. Borowanie gazowe w atmosferze N2-H2-BCl3 zaproponowano do wytwarzania warstwy borków na stopie Inconel 600. Proces składał się z dwóch etapów powtarzanych na przemian: nasycania borem i wyżarzania dyfuzyjnego. Podczas pierwszego etapu do atmosfery N2-H2 dodawano BCl3. Drugi etap polegał na wyżarzaniu, podczas którego dodawanie BCl3 wstrzymywano. Proces był bardziej ekonomiczny ze względu na ilość zużywanego BCl3. Badano mikrostrukturę i niektóre właściwości warstwy borowanej. Proponowane borowanie gazowe powodowało przyspieszenie dyfuzji boru do powierzchni w porównaniu z innymi metodami dyfuzyjnymi. Otrzymano porównywalną grubość warstwy borków po znacznie krótszym czasie trwania procesu. Mikroanaliza rentgenowska wskazała na zwiększone stężenie boru w warstwie. Prawdopodobnie w warstwie występują borki niklu (Ni2B, Ni3B i Ni4B3), jak również borki chromu lub żelaza. Zaobserwowano znaczne zwiększenie twardości (do 1400÷2200 HV) i odporności na ścieranie w wyniku gazowego borowania.
Czasopismo
Rocznik
Tom
Strony
745--748
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
- Instytut Inżynierii Materiałowej, Politechnika Poznańska, natalia.makuch@put.poznan.pl
autor
- Instytut Inżynierii Materiałowej, Politechnika Poznańska
autor
- Instytut Inżynierii Materiałowej, Politechnika Poznańska
Bibliografia
- [1] Graf von Matuschka A.: Borieren. Carl Hanser Verlag, München, Wien (1977).
- [2] Wierzchoń T.: The role of glow discharge in the formation of a boride layer on steel in the plasma boriding process. In: Boenig H. V., editor. Advances in Low-temperature Plasma Chemistry, Technology, Applications, vol. 2. Technomic Publishing Co. Inc., Lancaster-Besel (1988) 79÷88.
- [3] Venkataraman B., Sundararajan G.: The high speed sliding wear behaviour of boronized medium carbon steel. Surf. Coat. Technol. 73 (1995) 177÷184.
- [4] Hunger H. J., Trute G.: Boronizing to produce wear-resistant surface layers. Heat Treat. Met. 21 (2) (1994) 31÷39.
- [5] Xu C. H., Xi J. K., Gao W.: Improving the mechanical properties of boronized layers by superplastic boronizing. J. Mater. Process. Technol. 65 (1997) 94÷98.
- [6] Pertek A.: Gas boriding condition for the iron borides layers formation. Mater. Sci. Forum 163-165 (1994) 323÷328.
- [7] Liliental W., Tacikowski J.: Einfluss der Wärmebehandlung auf die Sprödigkeit von Boridschichten auf Stählen. Härterei Tech. Mitt. 35 (1980) 251÷256.
- [8] Yan P. X., Su Y. C.: Metal surface modification by B-C-nitriding in a twotemperature- stage process. Mater. Chem. Phys. 39 (1995) 304÷308.
- [9] Wierzchoń T., Bieliński P., Sikorski K.: Formation and properties of multicomponent and composite borided layers on steel. Surf. Coat. Technol. 73 (1995) 121÷124.
- [10] Toroghinezhad M. R., Salehi M., Ashrafizadeh F.: The effect of precarburizing treatment on morphology of the boride layer. Mater. Manuf. Process. 12 (1) (1997 117÷123.
- [11] Pertek A., Kulka M.: Microstructure and properties of composite (B + C) diffusion layers on low-carbon steel. J. Mater. Sci. 38 (2003) 269÷273.
- [12] Pertek A., Kulka M.: Two-step treatment carburizing followed by boriding on medium-carbon steel. Surf. Coat. Technol. 173 (2003) 309÷314.
- [13] Kulka M., Pertek A.: The importance of carbon content beneath iron borides after boriding of chromium and nickel-based low carbon steel. Appl. Surf. Sci. 214 (2003) 161÷171.
- [14] Kulka M., Pertek A.: Gradient formation of boride layers by borocarburizing. Appl. Surf. Sci. 254 (2008) 5281÷5290.
- [15] Kulka M., Pertek A., Makuch N.: The importance of carbon concentration- depth profile beneath iron borides for low-cycle fatigue strength. Mat. Sci. Eng. A 528 (2011) 8641÷8650.
- [16] Gopalakrishnan P., Shankar P., Subba Rao R. V., Sundar M., Ramakrishnan S. S.: Laser surface modification of low carbon borided steels. Scr. Mater. 44 (2001) 707÷712.
- [17] Kulka M., Pertek A.: Microstructure and properties of borided 41Cr4 steel after laser surface modification with remelting. Applied Surface Science 214 (2003) 278÷288.
- [18] Kulka M., Pertek A.: Laser surface modification of carburized and borocarburized 15CrNi6 steel. Mater. Charact. 58/5 (2007) 461÷470.
- [19] Kulka M., Makuch N., Pertek A., Piasecki A.: Microstructure and properties of borocarburized and laser-modified 17CrNi6-6 steel. Opt. Laser Technol. 44 (2012) 872÷881.
- [20] Molian P. A., Rajasekhara H. S.: Laser glazing of boronized iron and tool steels. Surf. Eng. 2 (4) (1986) 269.
- [21] Ozbek I., Akbulut H., Zeytin S., Bindal C., Hikmet Ucisik A.: The characterization of borided 99.5% purity nickel. Surf. Coat. Technol. 126 (2000) 166÷170.
- [22] Mu D., Shen B., Yang C., Zhao X.: Microstructure analysis of boronized pure nickel using boronizing powders with SiC as diluent. Vacuum 83 (2009) 1481÷1484.
- [23] Muhammad W., Hussain K., Tauqir A., Ul Haq A., Khan A. Q.: Evaluation of halide-activated pack boriding of Inconel 722. Metall. Mater. Trans. A 30A (1999) 670÷675.
- [24] Anthymidis K. G., Zinoviadis P., Roussos D., Tsipas D. N.: Boriding of nickel in a fluidized bed reactor. Mater. Res. Bull. 37 (2002) 515÷522.
- [25] Ueda N., Mizukoshi T., Demizu K., Sone T., Ikenaga A., Kawamoto M.: Boriding of nickel by the powder-pack method. Surf. Coat. Technol. 126 (2000) 25÷30.
- [26] Petrova R. S., Suwattananont N., Samardzic V.: The effect of boronizing on metallic alloys for automotive applications. J. Mater. Eng. Perform. 17 (3) (2008) 340÷345.
- [27] Lou D. C., Solberg J. K., Akselsen O. M., Dahl N.: Microstructure and property investigation of paste boronized pure nickel and Nimonic 90 superalloy. Mater. Chem. Phys. 115 (2009) 239÷244.
- [28] Torun O., Çelikyürek I.: Boriding of diffusion bonded joints of pure nickel to commercially pure titanium. Mater. Des. 30 (2009) 1830÷1834.
- [29] Anthymidis K. G., Stergioudis G., Roussos D., Zinoviadis P., Tsipas D. N.: Boriding of ferrous and non-ferrous metals and alloys in fluidized bed reactor. Surf. Eng. 18 (4) (2002) 255÷259.
- [30] Yu L. G., Khor K. A., Sundararajan G.: Boride layer growth kinetics during boriding of molybdenum by the Spark Plasma Sintering (SPS) technology. Surf. Coat. Technol. 201 (2006) 2849÷2853.
- [31] Basturk S., Senbabaoglu F., Islam C., Erten M., Lazoglu I., Gulmez T.: Titanium machining with new plasma boronized cutting tools. CIRP Annals – Manufacturing Technology 59 (2010) 101÷104.
- [32] Tang W., Wang Q., Wang S., Lu F.: Adherent diamond coatings on cemented carbide substrates with different cobalt contents. Diamond Relat. Mater. 10 (2001) 1700÷1704.
- [33] Borowski T., Brojanowska A., Kost M., Garbacz H., Wierzchoń T.: Modifying the properties of the Inconel 625 nickel alloy by glow discharge assisted nitriding. Vacuum 83 (12) (2009) 1489÷1493.
- [34] Sudha C., Anand R., Thomas Paul V., Saroja S., Vijayalakshmi M.: Nitriding kinetics of Inconel 600. Surf. Coat. Technol. 226 (2013) 92÷99.
- [35] Kula P., Pietrasik R., Dybowski K.: Vacuum carburizing-process optimization. J. Mater. Process. Technol. 164-165 (2005) 876÷881.
- [36] Kula P., Pietrasik R., Dybowski K., Paweta S., Wołowiec E.: Properties of surface layers processed by a new, high-temperature vacuum carburizing technology with prenitriding – PreNitLPC. Adv. Mater. Res. 452-453 (2012) 401÷406.
- [37] Kula P., Wołowiec E., Pietrasik R., Dybowski K., Januszewicz B.: Non-steady state approach to the vacuum nitriding for tools. Vacuum 88 (1) (2013) 1÷7.
- [38] Małdziński L.: Controlled nitriding using a ZeroFlow process. Heat Treating Progress 7 (2007) 53÷55.
- [39] Hegewaldt F., Singheiser L., Tuerk M.: Gasborieren. Haerterei Technische Mitteilungen 39 (1984) 7÷15.
- [40] Pertek A.: The structure formation and the properties of boronized layers obtained in gaseous boriding process. Dissertation No. 365. Publishing house of Poznan University of Technology, Poznan (2001).
- [41] Kubashevsky O.: Iron-binary phase diagrams. Springer Verlag, Berlin, New York (1982).
- [42] Kulka M., Makuch N., Dziarski P., Przestacki D.: Laser-borided layer formed on Inconel 600 alloy. Inżynieria Materiałowa 6 (2013) 733÷736.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8975daa6-6040-49d8-8cf0-8ff921c23e06