Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 4 | 1--13
Tytuł artykułu

Electrocoagulation Process for Chromium Removal in Leather Tanning Effluents

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The application of chromium sulfate in tanning operations yields chromium-laden wastewater, posing significant environmental risks. This research explored electrocoagulation as a remedial measure for tannery effluents. Varied parameters–pH (4, 7, 10), electric currents (0.5, 1.0, 1.5 A), and durations (1, 2, 3 h)–were optimized to diminish the chromium content. Evaluation based on initial and final chromium concentrations demonstrated 99.94% removal efficiency at pH 4, 1.5 A, over 3 hours. Achieving the 0.6 mg/L target concentration occurred at pH 4, 0.91 A, for 3 hours. This study highlighted the effectiveness of electrocoagulation in chromium mitigation within tannery wastewater, showcasing its potential as an environmentally sustainable remediation.
Wydawca

Rocznik
Strony
1--13
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • Faculty of Civil Engineering and Planning, Division of Environmental Engineering, Institut Teknologi Nasional, Bandung, 40124, Indonesia, etih@itenas.ac.id
  • Faculty of Civil Engineering and Planning, Division of Environmental Engineering, Institut Teknologi Nasional, Bandung, 40124, Indonesia, linahasyyati21@gmail.com
  • Faculty of Civil Engineering and Planning, Division of Environmental Engineering, Institut Teknologi Nasional, Bandung, 40124, Indonesia, didin@itenas.ac.id
  • Research Center for Environmental and Clean Technology, The National Research and Innovation of the Republic of Indonesia (BRIN), Bandung Advanced Science and Creative Engineering Space (BASICS), Kawasan Sains dan Teknologi (KST) Prof. Dr. Samaun Samadikun, Jalan Cisitu-Sangkuriang No. 21 D, Bandung, 40135, Indonesia, aburizky@yahoo.com
  • Research Center for Genetic Engineering, the National Research and Innovation Agency of the Republic of Indonesia (BRIN), Kawasan Sains dan Teknologi (KST) Ir. Soekarno, Jalan Raya Jakarta-Bogor, KM. 46, Cibinong, Bogor, 16911, Indonesia, dani008@brin.go.id
  • Research Center for Environmental and Clean Technology, The National Research and Innovation of the Republic of Indonesia (BRIN), Bandung Advanced Science and Creative Engineering Space (BASICS), Kawasan Sains dan Teknologi (KST) Prof. Dr. Samaun Samadikun, Jalan Cisitu-Sangkuriang No. 21 D, Bandung, 40135, Indonesia, erisbae@gmail.com
  • Collaborative Research Center for Zero Waste and Sustainability, Widya Mandala Surabaya Catholic University, Surabaya, 60114, Indonesia
Bibliografia
  • 1. Abdulmalik, A.F., Yakasai, H.M., Usman, S., Muhammad, J.B., Jagaba, A.H., Ibrahim, S., Babandi, A., Shukor, M.Y., 2023. Characterization and invitro toxicity assay of bio-reduced hexavalent chromium by Acinetobacter sp. isolated from tannery effluent. Case Studies in Chemical and Environmental Engineering 8, 100459. https://doi.org/10.1016/J. CSCEE.2023.100459
  • 2. Afiatun, E., Pradiko, H., Fabian, E., 2019. Turbidity reduction for the development of pilot scale electrocoagulation devices. International Journal of Geomate 16, 123–128. https://doi. org/10.21660/2019.56.4682
  • 3. Ali Maitlo, H., Kim, K.H., Yang Park, J., Hwan Kim, J., 2019. Removal mechanism for chromium (VI) in groundwater with cost-effective iron-air fuel cell electrocoagulation. Sep Purif Technol 213, 378–388. https://doi.org/10.1016/J.SEPPUR.2018.12.058
  • 4. AlJaberi, F.Y., Alardhi, S.M., Ahmed, S.A., Salman, A.D., Juzsakova, T., Cretescu, I., Le, P.C., Chung, W.J., Chang, S.W., Nguyen, D.D., 2022. Can electrocoagulation technology be integrated with wastewater treatment systems to improve treatment eff iciency? Environ Res 214, 113890. https://doi. org/10.1016/J.ENVRES.2022.113890
  • 5. Astuti, D., Wedaning, A., Janametri, A., Darnoto, S., Asyfiradayati, R., 2022. Reduction of chromium levels in tanning wastewater by phytoremediation method: a review. International Journal Of Multiscience, 3(1), 34-53.
  • 6. Aziz, N., Effendy, N., Basuki, K.T., 2017. Comparison of poly aluminium chloride (pac) and aluminium sulphate coagulants efficiency in waste water treatment plant, Jurnal Inovasi Teknik Kimia, 2, 24–31. http://dx.doi.org/10.31942/inteka.v2i1.1738
  • 7. Bacardit, A., Van Der Burgh, S., Armengol, J., Ollé, L., 2014. Evaluation of a new environment friendly tanning process. J Clean Prod, 65, 568–573. https:// doi.org/10.1016/J.JCLEPRO.2013.09.052
  • 8. Bandara, A.B.P., Kumara, G.M.P., Matsuno, A., Saito, T., Nga, T.T.V., Kawamoto, K., 2020. Examination of crushed laterite brick for removal of chromium and arsenic from wastewater. International Journal of GEOMATE, 19, 22–30. https:// doi.org/10.21660/2020.74.9176
  • 9. Benea, L., Simionescu – Bogatu, N., Chiriac, R., 2022. Electrochemically obtained Al2O3 nanoporous layers with increased anticorrosive properties of aluminum alloy. Journal of Materials Research and Technology, 17, 2636–2647. https://doi. org/10.1016/j.jmrt.2022.02.038
  • 10. Boinpally, S., Kolla, A., Kainthola, J., Kodali, R., Vemuri, J., 2023. A state-of-the-art review of the electrocoagulation technology for wastewater treatment. Water Cycle, 4, 26–36. https://doi. org/10.1016/J.WATCYC.2023.01.001
  • 11. Bratovcic, A., Buksek, H., Helix-Nielsen, C., Petrinic, I., 2022. Concentrating hexavalent chromium electroplating wastewater for recovery and reuse by forward osmosis using underground brine as draw solution. Chemical Engineering Journal, 431, 133918. https://doi.org/10.1016/J.CEJ.2021.133918
  • 12. Cai, D.-G., Qiu, C.-Q., Zhu, Z.-H., Zheng, T.-F., Wei, W.-J., Chen, J.-L., Liu, S.-J., Wen, H.-R., 2022. Fabrication and DFT Calculation of Amine-Functionalized Metal–Organic Framework as a Turn-On Fluorescence Sensor for Fe3+ and Al3+ Ions. Inorg Chem, 61, 14770–14777. https://doi.org/10.1021/ acs.inorgchem.2c02195
  • 13. Dahish, H.A., 2023. Predicting the compressive strength of concrete containing crumb rubber and recycled aggregate using response surface methodology. International Journal of GEOMATE, 24, 117–124. https://doi.org/10.21660/2023.104.3788
  • 14. Dakhem, M., Ghanati, F., Afshar Mohammadian, M., Sharifi, M., 2022. Tea leaves, efficient biosorbent for removal of Al3+ from drinking water. International Journal of Environmental Science and Technology, 19, 10985–10998. https://doi. org/10.1007/s13762-022-04313-6
  • 15. Deghles, A., Kurt, U., 2017a. Hydrogen Gas Production from Tannery Wastewater by Electrocoagulation of a Continuous Mode with Simultaneous Pollutants Removal. IOSR Journal of Applied Chemistry, 10, 40–50. https://doi. org/10.9790/5736-1003014050
  • 16. Deghles, A., Kurt, U., 2017b. Hydrogen Gas Production from Tannery Wastewater by Electrocoagulation of a Continuous Mode with Simultaneous Pollutants Removal. IOSR Journal of Applied Chemistry, 10, 40–50. https://doi.org/10.9790/5736-1003014050
  • 17. DesMarias, T.L., Costa, M., 2019. Mechanisms of chromium-induced toxicity. Curr Opin Toxicol, 14, 1–7. https://doi.org/10.1016/J.COTOX.2019.05.003
  • 18. George, J.S., Ramos, A., Shipley, H.J., 2015. Tanning facility wastewater treatment: Analysis of physical–chemical and reverse osmosis methods. J Environ Chem Eng, 3, 969–976. https://doi. org/10.1016/J.JECE.2015.03.011
  • 19. Guertin, J., Jacobs, J., Avakian, C.P., 2016. Chromium(VI) Handbook, Chromium(VI) Handbook.
  • 20. Hasan, M.A., Hashem, M.A., Arman, M.N., Momen, M.A., 2021. Batch Electrocoagulation Process for Removal of Chromium from Tannery Wastewater. Journal of Engineering Science, 12, 29–34. https://doi.org/10.3329/jes.v12i1.53098
  • 21. Hashem, Md.A., Mim, M.W., Noshin, N., Maoya, M., 2024. Chromium adsorption capacity from tannery wastewater on thermally activated adsorbent derived from kitchen waste biomass. Cleaner Water, 1, 100001. https://doi.org/10.1016/J. CLWAT.2023.100001
  • 22. Hosseine Amirhandeh, S.Z., Salem, A., Salem, S., 2022. Sono-chemical extraction of silica from rice husk for uptake of chromium species from tannery wastewater: Effect of aging time on porous structure. Mater Lett, 327, 132933. https://doi.org/10.1016/J. MATLET.2022.132933
  • 23. Lamidi, S., Olaleye, N., Bankole, Y., Obalola, A., Aribike, E., Adigun, I., 2023. Applications of Response Surface Methodology (RSM) in Product Design, Development, and Process Optimization, in: Response Surface Methodology - Research Advances and Applications. IntechOpen. https://doi. org/10.5772/intechopen.106763
  • 24. López-Guzmán, M., Flores-Hidalgo, M.A., Reynoso-Cuevas, L., 2021. Electrocoagulation process: An approach to continuous processes, reactors design, pharmaceuticals removal, and hybrid systems—a review. Processes. https://doi.org/10.3390/pr9101831
  • 25. Madhusudan, P., Lee, C., Kim, J.O., 2023. Synthesis of Al2O3@Fe2O3 core–shell nanorods and its potential for fast phosphate recovery and adsorption of chromium (VI) ions from contaminated wastewater. Sep Purif Technol, 326, 124691. https://doi. org/10.1016/J.SEPPUR.2023.124691
  • 26. Mao, Y., Zhao, Y., Cotterill, S., 2023. Examining Current and Future Applications of Electrocoagulation in Wastewater Treatment. Water (Switzerland). https://doi.org/10.3390/w15081455
  • 27. Masood, N., Irshad, M.A., Nawaz, R., Abbas, T., Abdel-Maksoud, M.A., AlQahtani, W.H., AbdElgawad, H., Rizwan, M., Abeed, A.H.A., 2023. Green synthesis, characterization and adsorption of chromium and cadmium from wastewater using cerium oxide nanoparticles; reaction kinetics study. J Mol Struct, 1294, 136563. https://doi.org/10.1016/J. MOLSTRUC.2023.136563
  • 28. Meng, X., Xu, Y., Cao, H., Lin, X., Ning, P., Zhang, Y., Garcia, Y.G., Sun, Z., 2020. Internal failure of anode materials for lithium batteries — A critical review. Green Energy & Environment, 5, 22–36. https://doi.org/10.1016/J.GEE.2019.10.003
  • 29. Monteiro, M.C.O., Dattila, F., López, N., Koper, M.T.M., 2022. The Role of Cation Acidity on the Competition between Hydrogen Evolution and CO2Reduction on Gold Electrodes. J Am Chem Soc, 144, 1589–1602. https://doi.org/10.1021/jacs.1c10171
  • 30. Moussa, D.T., El-Naas, M.H., Nasser, M., Al-Marri, M.J., 2017. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. J Environ Manage, 186, 24–41. https://doi. org/10.1016/J.JENVMAN.2016.10.032
  • 31. Nti, S.O., Buamah, R., Atebiya, J., 2021. Polyaluminium chloride dosing effects on coagulation performance: case study, barekese, ghana. Water Pract Technol, 16, 1215–1223. https://doi.org/10.2166/ wpt.2021.069
  • 32. Pan, Z., Yang, X., Liang, Y., Lyu, M., Huang, Y., Zhou, H., Wen, G., Yu, H., He, J., 2023. Chromiumcontaining wastewater reclamation via forward osmosis with sewage sludge ash temperature-sensitive hydrogel as draw agent. Journal of Water Process Engineering, 51, 103422. https://doi.org/10.1016/J. JWPE.2022.103422
  • 33. Prasad, S., Yadav, K.K., Kumar, S., Gupta, N., Cabral-Pinto, M.M.S., Rezania, S., Radwan, N., Alam, J., 2021. Chromium contamination and effect on environmental health and its remediation: A sustainable approaches. J Environ Manage, 285, 112174. https://doi.org/10.1016/J.JENVMAN.2021.112174
  • 34. Simbarta Tarigan, B., Atiek Rostika Noviyanti, dan, Raya Bandung-Sumedang Km, J., 2021. Composation of Polyaluminum Chloride with Hydroxyapatite and Its Application for Separation of Hexavalent Chromium Ions.
  • 35. Sivakumar, V., 2022. Towards environmental protection and process safety in leather processing – A comprehensive analysis and review. Process Safety and Environmental Protection, 163, 703–726. https://doi.org/10.1016/J.PSEP.2022.05.062
  • 36. Song, U., Pyo, K.S., Song, H.H., Lee, S. ryung, Kim, J., 2024. Environmental toxicity assessment of chromium (III) oxide nanoparticles using a phytotoxic, cytotoxic, and genotoxic approach. Emerg Contam, 10, 100293. https://doi.org/10.1016/J.EMCON.2023.100293
  • 37. Sulaiman, S.M., Nugroho, G., Saputra, H.M., Djaenudin, Permana, D., Fitria, N., Putra, H.E., 2023. Valorization of Banana Bunch Waste as a Feedstock via Hydrothermal Carbonization for Energy Purposes. Journal of Ecological Engineering, 24, 61–74. https://doi.org/10.12911/22998993/163350
  • 38. Suyati, L., Fadilah Nur, I.D., Widodo, D.S., Gunawan, Rahmanto, W.H., 2019. Electrosynthesis of Al(OH)3 by Al(s)|KCl(aq)||KCl(s)|C(s) system, in: IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing. https://doi. org/10.1088/1757-899X/509/1/012066
  • 39. Tamjidi, S., Esmaeili, H., 2019. Chemically Modified CaO/Fe3O4 Nanocomposite by Sodium Dodecyl Sulfate for Cr(III) Removal from Water. Chem Eng Technol. https://doi.org/10.1002/ceat.201800488
  • 40. Tejada tovar, C. nahir, Villabona Ortíz, A., Contreras Amaya, R., 2021. Electrocoagulation as an Alternative for the Removal of Chromium (VI) in Solution. Tecnura, 25, 28–42. https://doi. org/10.14483/22487638.17088
  • 41. Wang, G., Zhang, J., Liu, L., Zhou, J.Z., Liu, Q., Qian, G., Xu, Z.P., Richards, R.M., 2018. Novel multi-metal containing MnCr catalyst made from manganese slag and chromium wastewater for effective selective catalytic reduction of nitric oxide at low temperature. J Clean Prod, 183, 917–924. https://doi.org/10.1016/J.JCLEPRO.2018.02.207
  • 42. Wang, J.Y., Kadier, A., Hao, B., Li, H., Ma, P.C., 2022. Performance optimization of a batch scale electrocoagulation process using stainless steel mesh (304) cathode for the separation of oil-in-water emulsion. Chemical Engineering and Processing - Process Intensification, 174, 108901. https://doi. org/10.1016/J.CEP.2022.108901
  • 43. Winoto, H.P., Gunawan, D., Indarto, A., 2020. Eff icient phosphate recovery from fertilizer wastewater stream through simultaneous Ca and F ions removal. Agrochemicals Detection, Treatment and Remediation: Pesticides and Chemical Fertilizers, 369–400. https://doi.org/10.1016/ B978-0-08-103017-2.00014-3
  • 44. Wu, X., Qiang, X., Liu, D., Yu, L., Wang, X., 2020. An eco-friendly tanning process to wet-white leather based on amino acids. J Clean Prod, 270, 122399. https://doi.org/10.1016/J.JCLEPRO.2020.122399
  • 45. Xu, X., Huang, H., Zhang, Y., Xu, Z., Cao, X., 2019. Biochar as both electron donor and electron shuttle for the reduction transformation of Cr(VI) during its sorption. Environmental Pollution, 244, 423–430. https://doi.org/10.1016/J.ENVPOL.2018.10.068
  • 46. Zaied, B.K., Rashid, M., Nasrullah, M., Zularisam, A.W., Pant, D., Singh, L., 2020. A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. Science of The Total Environment, 726, 138095. https://doi. org/10.1016/J.SCITOTENV.2020.138095
  • 47. Zhang, T., Wang, P., Li, Y., Bao, Y., Lim, T.-T., Zhan, S., 2023. Advances in dual-functional photocatalysis for simultaneous reduction of hexavalent chromium and oxidation of organics in wastewater. Environmental Functional Materials, 2, 1–12. https:// doi.org/10.1016/J.EFMAT.2023.05.001
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-89721b92-4218-4bd3-82ac-bd85438c868e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.