Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 41, no. 4 | 1406--1417
Tytuł artykułu

The role of computer simulations in the investigation of mechanisms underlying rhythmic firing of human motoneuron

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Over the past few decades, a great deal of information on the function of mammalian motor neurons (MNs) has been obtained from intracellular recordings collected in acute animal experiments. Nowadays, it is becoming increasingly clear that human experiments in which MNs are tested under physiological conditions are equally important for further MN research. Investigation of human MNs is possible by recording the potentials of single motor units (MUs), which respond to action potentials from their MNs in the one-to-one fashion. Thus the analysis of MU firing patterns, based on basic knowledge of the MN physiology obtained from animal experiments and verified by computer simulations, allows the evaluation of the biophysical properties of human MNs. The MN models can be roughly classified as threshold-crossing and compartmental. Threshold-crossing models allowed verification of the methods for assessing the shape of synaptic volleys by analyzing the stimulus-correlated MN discharge patterns. They also helped in the development of methods for estimation of afterhyperpolarization of human MNs. The earliest compartmental models did not take into account the effects of persistent inward currents (PICs), which are now considered to be one of the most important factors in shaping human MN discharge patterns. Recent MN models increasingly focus on PICs and their interaction with synaptic inputs. It has been shown that different combinations of the two can produce various MU discharge patterns, including those mimicking the lack of effect of neuromodulators. This review shows how computer simulations support scientists in obtaining information from human experiments.
Wydawca

Rocznik
Strony
1406--1417
Opis fizyczny
Bibliogr. 91 poz., rys., wykr.
Twórcy
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland, mpiotrkiewicz@ibib.waw.pl
Bibliografia
  • [1] Kernell D, The Motoneurone and its muscle fibres. 2006, Oxford: Oxford University Press. 341.
  • [2] Kernell D. The limits of firing frequency in cat lumbosacral motoneurons possessing different time course of after hyperpolarization. Acta Physiol Scand 1965;65:87–100.
  • [3] Calvin W, Stevens C. Synaptic noise and other sources of randomness in motoneuron interspike intervals. J Neurophysiol 1968;31:574–87.
  • [4] Matthews PB. Relationship of firing intervals of human motor units to the trajectory of post-spike after-hyperpolarization and synaptic noise. J Physiol Lond 1996;492(Pt 2):597–628.
  • [5] Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 1952;117(4):500–44.
  • [6] Jones KE, Bawa P. Computer simulation of the responses of human motoneurons to composite 1A EPSPS: effects of background firing rate. J Neurophysiol 1997;77(1):405–20.
  • [7] Schwindt PC, Crill WE. Factors influencing motoneuron rhythmic firing: results from a voltage-clamp study. J Neurophysiol 1982;48(4):875–90.
  • [8] Heckman CJ, Lee RH. The role of voltage-sensitive dendritic conductances in generating bistable firing patterns in motoneurons. J Physiol Paris 1999;93(1–2):97–100.
  • [9] Afsharipour B et al. Estimation of self-sustained activity produced by persistent inward currents using firing rate profiles of multiple motor units in humans. J Neurophysiol 2020;124(1):63–85.
  • [10] Gorassini M et al. Intrinsic activation of human motoneurons: possible contribution to motor unit excitation. J Neurophysiol 2002;87(4):1850–8.
  • [11] Heckman CJ et al. Motoneuron excitability: the importance of neuromodulatory inputs. Clin Neurophysiol 2009;120 (12):2040–54.
  • [12] Elbasiouny SM, Development of modified cable models to simulate accurate neuronal active behaviors. J Appl Physiol (Bethesda, Md.: 1985), 2014;117(11): 1243–1261.
  • [13] Kim H, Heckman C. Neuromodulation impact on nonlinear firing behavior of a reduced model motoneuron with the active dendrite. Front Comput Neurosci 2014;8.
  • [14] Kim H, Jones KE. The retrograde frequency response of passive dendritic trees constrains the nonlinear firing behaviour of a reduced neuron model. PLoS ONE 2012;7(8) e43654.
  • [15] Kim H, Jones KE, Heckman CJ. Asymmetry in signal propagation between the soma and dendrites plays a key role in determining dendritic excitability in motoneurons. PLoS ONE 2014;9(8) e95454.
  • [16] Kim H, Major LA, Jones KE. Derivation of cable parameters for a reduced model that retains asymmetric voltage attenuation of reconstructed spinal motor neuron dendrites. J Comput Neurosci 2009;27(3):321–36.
  • [17] Fetz EE, Gustafsson B. Relation between shapes of postsynaptic potentials and changes in firing probability of cat motoneurones. J Physiol Lond 1983;341:387–410.
  • [18] Miles TS, Türker KS, Le TH. Ia reflexes and EPSPs in human soleus motor neurones. Exp Brain Res 1989;77(3):628–36.
  • [19] Nordstrom MA, Fuglevand AJ, Enoka RM. Estimating the strength of common input to human motoneurons from the cross-correlogram. J Physiol 1992;453(1):547–74.
  • [20] Gerstein GL, Kiang NY. An approach to the quantitative analysis of electrophysiological data from single neurons. Biophys J 1960;1:15–28.
  • [21] Person RS. Study of the H-reflex of human hand muscles using the post-stimulus histogram method. Neirofiziologiia 1977;9(6):647–50.
  • [22] Stephens JA, Usherwood TP, Garnett R. Technique for studying synaptic connections of single motoneurones in man. Nature 1976;263(5575):343–4.
  • [23] Moore GP et al. Statistical signs of synaptic interaction in neurons. Biophys J 1970;10(9):876–900.
  • [24] Knox CK, Poppele RE. Correlation analysis of stimulus-evoked changes in excitability of spontaneously firing neurons. J Neurophysiol 1977;40(3):616–25.
  • [25] Gustafsson B, McCrea D. Influence of stretch-evoked synaptic potentials on firing probability of cat spinal motoneurones. J Physiol Lond 1984;347(1):431–51.
  • [26] Kirkwood PA, Sears TA. The synaptic connexions to intercostal motoneurones as revealed by the average common excitation potential. J Physiol 1978;275:103–34.
  • [27] Cope TC, Fetz EE, Matsumura M. Cross-correlation assessment of synaptic strength of single Ia fibre connections with triceps surae motoneurones in cats. J Physiol Lond 1987;390:161–88.
  • [28] Ashby P, Zilm D. Relationship between EPSP shape and cross-correlation profile explored by computer simulation for studies on human motoneurons. Exp Brain Res 1982;47 (1):33–40.
  • [29] Coombs JS, Eccles JC, Fatt P. Excitatory synaptic action in motoneurones. J Physiol 1955;130(2):374–95.
  • [30] Schwindt PC, Calvin WH. Membrane-potential trajectories between spikes underlying motoneuron firing rates. J Neurophysiol 1972;35(3):311–25.
  • [31] Calvin WH. Three modes of repetitive firing and the role of threshold time course between spikes. Brain Res 1974;69 (2):341–6.
  • [32] Powers RK. A variable-threshold motoneuron model that incorporates time- and voltage-dependent potassium and calcium conductances. J Neurophysiol 1993;70(1):246–62.
  • [33] Türker KS, Powers RK. Estimation of postsynaptic potentials in rat hypoglossal motoneurones: insights for human work. J Physiol Lond 2003;551(Pt 2):419–31.
  • [34] Weber M, Eisen A, Nakajima M. Corticomotoneuronal activity in ALS: changes in the peristimulus time histogram over time. Clin Neurophysiol 2000;111(1):169–77.
  • [35] Awiszus F. Spike train analysis. J Neurosci Methods 1997;74 (2):155–66.
  • [36] Türker KS, Cheng HB. Motor-unit firing frequency can be used for the estimation of synaptic potentials in human motoneurones. J Neurosci Methods 1994;53(2):225–34.
  • [37] Piotrkiewicz M. An influence of after hyperpolarization on the pattern of motoneuronal rhythmic activity. J Physiol Paris 1999;93(1–2):125–33.
  • [38] Kuraszkiewicz B, Młoźniak D, Piotrkiewicz M. Threshold-crossing model of human motoneuron. Lect Notes Bioinf 2012;7339:209–19.
  • [39] Baldissera F, Gustafsson B. Time course and potential dependence of the membrane conductance change during the after hyperpolarization in the cat’s alpha-motoneurones. Brain Res 1970;17(2):365–8.
  • [40] Powers RK, Binder MD. Relationship between the time course of the after hyperpolarization and discharge variability in cat spinal motoneurones. J Physiol 2000;528(Pt 1):131–50.
  • [41] Baldissera F, Gustafsson B. After hyperpolarization conductance time course in lumbar motoneurones of the cat. Acta Physiol Scand 1974;91(4):512–27.
  • [42] Eccles JC. The ionic mechanisms of excitatory and inhibitory synaptic action. Ann N Y Acad Sci 1966;137(2):473–94.
  • [43] Piotrkiewicz M, Kudina L, Jakubiec M. Computer simulation study of the relationship between the profile of excitatory postsynaptic potential and stimulus-correlated motoneuron firing. Biol Cybern 2009;100(3):215–30.
  • [44] Powers RK, Türker KS. Estimates of EPSP amplitude based on changes in motoneuron discharge rate and probability. Exp Brain Res 2010;206(4):427–40.
  • [45] Piotrkiewicz M, et al. Recurrent inhibition in motoneurone pools of slow and fast human muscles. Invited lecture, in Contributions to the Motoneuron Meeting ‘‘Towards translational research in motoneurons” 2010: Paris.
  • [46] Prasartwuth O, Binboga E, Turker KS. A study of synaptic connection between low threshold afferent fibres in common peroneal nerve and motoneurones in human tibialis anterior. Exp Brain Res 2008;191(4):465–72.
  • [47] Ashby P, Zilm D. Characteristics of postsynaptic potentials produced in single human motoneurons by homonymous group 1 volleys. Exp Brain Res 1982;47(1):41–8.
  • [48] Matthews PB. Properties of human motoneurones and their synaptic noise deduced from motor unit recordings with the aid of computer modelling. J Physiol Paris 1999;93(1–2):135–45.
  • [49] Matthews PB. A new way of using modelling to estimate the size of a motoneurone’s EPSP. Adv Exp Med Biol 2002;508:193–7.
  • [50] Tokizane T, Shimazu H. Functional differentiation of human skeletal muscle. Charles C. Thomas: Springfield; 1964.
  • [51] Person RS, Kudina LP. Discharge frequency and discharge pattern of human motor units during voluntary contraction of muscle. Electroencephalogr Clin Neurophysiol 1972;32 (5):471–83.
  • [52] Holt GR et al. Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J Neurophysiol 1996;75 (5):1806–14.
  • [53] Ivanova TD et al. Motoneurone after hyperpolarisation time- course following stroke. Clin Neurophysiol 2014;125 (3):544–51.
  • [54] Zijdewind I, Thomas CK. Firing patterns of spontaneously active motor units in spinal cord-injured subjects. J Physiol 2013;590(7):1683–97.
  • [55] Kudina LP, Alexeeva NL. After-potentials and control of repetitive firing in human motoneurones. Electroencephalogr Clin Neurophysiol 1992;85(5):345–53.
  • [56] Piotrkiewicz M et al. Discharge properties and afterhyperpolarization of human motoneurons. Biocybern Biomed Eng 2001;21:53–75.
  • [57] MacDonell CW, Ivanova TD, Garland SJ. Afterhyperpolarization time-course and minimal discharge rate in low threshold motor units in humans. Exp Brain Res 2008;189(1):23–33.
  • [58] Gossen ER, Ivanova TD, Garland SJ. The time course of the motoneurone afterhyperpolarization is related to motor unit twitch speed in human skeletal muscle. J Physiol (Lond) 2003;552(2):657–64.
  • [59] Piotrkiewicz M et al. Age-related change in duration of afterhyperpolarization of human motoneurones. J Physiol (Lond) 2007;585(2):483–90.
  • [60] Piotrkiewicz M, Hausmanowa-Petrusewicz I. Motoneuron afterhyperpolarisation duration in amyotrophic lateral sclerosis. J Physiol (Lond) 2011;589(11):2745–54.
  • [61] Suresh AK et al. Changes in motoneuron afterhyperpolarization duration in stroke survivors. J Neurophysiol 2014;112(6):1447–56.
  • [62] Piotrkiewicz M, et al., Motoneuron ‘‘fastness” in Amyotrophic Lateral Sclerosis., in Lecture Notes of 68th ICB Seminar ‘‘Motoneurons and motoneuron pools”, G Vrbova, M Piotrkiewicz, W Zmysłowski, Editors. 2005, ICB: Warsaw. p. 69–76.
  • [63] Jones KE, Bawa P. Responses of human motoneurons to Ia inputs: effects of background firing rate. Can J Physiol Pharmacol 1995;73(9):1224–34.
  • [64] Kudina LP. Excitability of firing motoneurones tested by Ia afferent volleys in human triceps surae. Electroencephalogr Clin Neurophysiol 1988;69(6):576–80.
  • [65] Powers RK, Binder MD. Distribution of oligosynaptic group I input to the cat medial gastrocnemius motoneuron pool. J Neurophysiol 1985;53(2):497–517.
  • [66] De Schutter E. Computer software for development and simulation of compartmental models of neurons. Comput Biol Med 1989;19(2):71–81.
  • [67] Powers RK et al. Contribution of intrinsic properties and synaptic inputs to motoneuron discharge patterns: a simulation study. J Neurophysiol 2012;107(3):808–23.
  • [68] Hines M. A program for simulation of nerve equations with branching geometries. Int J Biomed Comput 1989;24(1):55–68.
  • [69] Cullheim S et al. Membrane area and dendritic structure in type-identified triceps surae alpha motoneurons. J Comp Neurol 1987;255(1):68–81.
  • [70] Fleshman JW, Segev I, Burke RB. Electrotonic architecture of type-identified alpha-motoneurons in the cat spinal cord. J Neurophysiol 1988;60(1):60–85.
  • [71] Lee RH, Heckman CJ. Enhancement of bistability in spinal motoneurons in vivo by the noradrenergic alpha1 agonist methoxamine. J Neurophysiol 1999;81(5):2164–74.
  • [72] Fleidervish IA, Friedman A, Gutnick MJ. Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. J Physiol 1996;493(Pt 1):83–97.
  • [73] Destexhe A et al. Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 2001;107(1):13–24.
  • [74] Powers RK, Heckman CJ. Synaptic control of the shape of the motoneuron pool input-output function. J Neurophysiol 2017;117(3):1171–84.
  • [75] Powers RK, Heckman CJ. Contribution of intrinsic motoneuron properties to discharge hysteresis and its estimation based on paired motor unit recordings: a simulation study. J Neurophysiol 2015;114(1):184–98.
  • [76] Revill AL, Fuglevand AJ. Effects of persistent inward currents, accommodation, and adaptation on motor unit behavior: a simulation study. J Neurophysiol 2011;106(3):1467–79.
  • [77] Carlin KP et al. Staircase currents in motoneurons: insight into the spatial arrangement of calcium channels in the dendritic tree. J Neurosci 2009;29(16):5343–53.
  • [78] Johnson MD et al. The potential for understanding the synaptic organization of human motor commands via the firing patterns of motoneurons. J Neurophysiol 2017;118 (1):520–31.
  • [79] Kuo JJ et al. Active Dendritic Integration of Inhibitory Synaptic Inputs In Vivo. J Neurophysiol 2003;90(6):3617–24.
  • [80] Revill AL, Fuglevand AJ. Inhibition linearizes firing rate responses in human motor units: implications for the role of persistent inward currents. J Physiol 2017;595(1):179–91.
  • [81] Martinez-Valdes E et al. Inability to increase the neural drive to muscle is associated with task failure during submaximal contractions. J Neurophysiol 2020;124(4):1110–21.
  • [82] Del Vecchio A et al. You are as fast as your motor neurons: speed of recruitment and maximal discharge of motor neurons determine the maximal rate of force development in humans. J Physiol 2019;597(9):2445–56.
  • [83] Hu X, Rymer WZ, Suresh NL. Motor unit firing rate patterns during voluntary muscle force generation: a simulation study. J Neural Eng 2014;11(2) 026015.
  • [84] Allen JM, Elbasiouny SM, The effects of model composition design choices on high-fidelity simulations of motoneuron recruitment and firing behaviors. J Neural Eng, 2018;15 (3):036024-036024.
  • [85] Lothe LR, Raven TJ, Eken T. Single-motor-unit discharge characteristics in human lumbar multifidus muscle. J Neurophysiol 2015;114(2):1286–97.
  • [86] Foley RCA, Kalmar JM. Estimates of persistent inward current in human motor neurons during postural sway. J Neurophysiol 2019;122(5):2095–110.
  • [87] Ren N et al. Model-based detection of putative synaptic connections from spike recordings with latency and type constraints. J Neurophysiol 2020;124(6):1588–604.
  • [88] Sinha N et al. Cross-frequency coupling in descending motor pathways: theory and simulation. Front Syst Neurosci 2020;13(86).
  • [89] Hardesty RL et al. Computational evidence for nonlinear feedforward modulation of fusimotor drive to antagonistic co-contracting muscles. Sci Rep 2020;10(1):10625.
  • [90] Kim H, Linking motoneuron PIC location to motor function in closed-loop motor unit system including afferent feedback: a computational investigation. eNeuro, 2020. 7(2): ENEURO.0014-0020.2020.
  • [91] Cisi RRL, Kohn AF. Simulation system of spinal cord motor nuclei and associated nerves and muscles, in a Web-based architecture. J Comput Neurosci 2008;25(3):520–42.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-89481f4b-8a17-4da0-bdfd-c63ea4eeb1a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.