Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 68, iss. 3 | 239--252
Tytuł artykułu

Thermodynamics analysis of an MHD casson fluid flow through a rotating permeable channel with slip and hall effects

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the inherent irreversibility in a Casson fluid flow through a rotating permeable microchannel with wall slip and Hall current is investigated. It is assumed that the lower wall is subjected to the velocity slip and fluid injection while the fluid suction occurs at the upper wall. The nonlinear governing equations of momentum and energy balance are obtained, analyzed and solved numerically using the shooting technique together with the Runge-Kutta-Fehlberg integration method. Pertinent results depicting the effects of various embedded thermophysical parameters on the fluid velocity, temperature, skin friction, the Nusselt number, entropy generation rate and the Bejan number are presented graphically and discussed. It is found that the entropy generation rate is enhanced by fluid rotation and velocity slip but lessened with a rise magnetic field intensity. Our results will undoubtedly augment the design and efficient operation of micro-cooling devices, micro-heat exchangers, micropumps and micro-mixing technologies.
Wydawca

Rocznik
Strony
239--252
Opis fizyczny
Bibliogr. 13 poz., rys., wykr.
Twórcy
  • Department of Mathematics and Statistics Namibia University of Science and Technology Private Bag 13388, 13 Storch Street, Windhoek, Namibia , samdet1@yahoo.com
  • Faculty of Military Science Stellenbosch University Private Bag X2, Saldanha 7395, South Africa
Bibliografia
  • 1. Casson N., A flow equation for pigment oil-suspensions of the printing ink type, Rheology of Disperse Systems, C.C. Mill [Ed.], pp. 84–104, Pergamon Press, London, 1959.
  • 2. Gireesha B.J., Archana M., Prasannakumara B.C., Reddy Gorla R.S., Makinde O.D., MHD three dimensional double-diffusive flow of Casson nanofluid with buoyancy forces and nonlinear thermal radiation over a stretching surface, International Journal of Numerical Methods for Heat & Fluid Flow, 27(12): 2858–2878, 2017, doi: 10.1108/HFF01-2017-0022.
  • 3. Zaib A., Rashidi M., Chamkha A.J., Bhattacharyya K., Numerical solution of second law analysis for MHD Casson nanofluid past a wedge with activation energy and binary chemical reaction, International Journal of Numerical Methods for Heat & Fluid Flow, 27(12): 2816–2834, 2017, doi: 10.1108/HFF-02-2017-0063.
  • 4. Gupta S., Sharma K., Numerical simulation for the magnetohydrodynamic three-dimensional flow of Casson nanofluid with convective boundary conditions and thermal radiation, Engineering Computations, 34(8): 2698–2722, 2017, doi: 10.1108/EC-02-2017-0064.
  • 5. Durairaj M., Ramahandran S., Mehdi R.M., Heat generating/absorbing and chemically reacting Casson fluid flow over a vertical cone and flat plate saturated with a nonDarcy porous medium, International Journal of Numerical Methods for Heat & Fluid Flow, 27(1): 156–173, 2017, doi: 10.1108/HFF-08-2015-0318.
  • 6. Hymavathi T., Sridhar W., Numerical solution to mass transfer in MHD flow of Casson fluid with suction and chemical reaction, International Journal of Chemical Sciences, 14(4): 2183–2197, 2016.
  • 7. Hussanan A., Salleh M.Z., Khan I., Tahar R.M., Heat transfer in magnetohydrodynamic flow of a Casson fluid with porous medium and Newtonian heating, Journal of Nanofluids, 6(4): 784-793, 2017, doi: 10.1166/jon.2017.1359.
  • 8. Rawi N.A., Ilias M.R., Lim Y.J., Isa Z.M., Shafie S., Unsteady mixed convection flow of Casson fluid past an inclined stretching sheet in the presence of nanoparticles, Journal of Physics: Conference Series, 890: 012048, 2017, doi: 10.1088/1742-6596/890/ 1/012048.
  • 9. Eegunjobi A.S., Makinde O.D., Inherent irreversibility in a variable viscosity Hartmann flow through a rotating permeable channel with Hall effects, Defect and Diffusion Forum, 377: 180–188, 2017, doi: 10.4028/www.scientific.net/ddf.377.180.
  • 10. Singh J.K., Seth G.S., Begum S.G., Unsteady MHD natural convection flow of a rotating viscoelastic fluid over an infinite vertical porous plate due to oscillating freestream, Multidiscipline Modeling in Materials and Structures, 14(2): 236–260, 2018, doi: 10.1108/MMMS-06-2017-0054.
  • 11. Rashidi M.M., Erfani E., Analytical method for solving steady MHD convective and slip flow due to a rotating disk with viscous dissipation and Ohmic heating, Engineering Computations, 29(6): 562–579, 2012, doi: 10.1108/02644401211246283.
  • 12. Papa F., Vaidyanathan K., Keith T.G., DeWitt.J., Numerical computations of flow in rotating ducts with strong curvature, International Journal of Numerical Methods for Heat & Fluid Flow, 10(5): 541–557, 2000, doi: 10.1108/09615530010338213.
  • 13. Arikoglu A., Ozkol I., On the MHD and slip flow over a rotating disk with heat transfer, International Journal of Numerical Methods for Heat & Fluid Flow, 16(2): 172– 184, 2006, doi: 10.1108/09615530610644253.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-894340b1-bb46-41fe-b5f2-4ef8dbff385d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.