doi: 10.14708/ma.v50i2.7193 ma ptm

MATHEMATICA APPLICANDA ©
Vol. 50(2) 2022, p. 153-164
2012

BARTLOMIEJ SZCZYGIEL (Warszawa)
LESZEK MARCINKOWSKI & * (Warszawa)

A review note on arbitrary precision arithmetic

Abstract In this paper, we present a note on arbitrary precision. We give two simple
examples showing the need of using arbitrary precision arithmetic. Next, we discuss
how to use arbitrary precision arithmetic types in MATLAB/OCTAVE and further
present short descriptions of several basic, in particular C/C++, packages for using
arbitrary precision arithmetic in numerical codes for scientific computations. Finally,
we discuss the contribution of one of the authors in the development of a library for
arbitrary precision floating point numbers briefly.

2010 Mathematics Subject Classification: Primary: 65G50; Secondary: 68W30.

Key words and phrases: arbitrary precision arithmetic, floating point numbers, sci-
entific computing.

1. Introduction The classical standard IEEE 32-bit floating-point arith-
metic gives sufficiently accurate results in most practical or scientific applica-
tions. For other applications, the standard IEEE 64-bit floating-point arith-
metic is wanted. Quite often a mix of these arithmetics gives satisfactory
results. E.g. we can use lower precision in general and switch to higher preci-
sion just in sensitive numerical parts of computational code.

However, in some complicated more demanding scientific applications, es-
pecially in computational mathematical physics, a higher accuracy is required.
Many scientists and engineers think that even 64-bit arithmetic is not accurate
enough and that in their high-scale computations, they need higher accuracy.
As the authors of [3] report, in the ATLAS experiment at the Large Hadron
Collider when the scientists tried to track charged particles with very high
precision, the scientists noted that a change in some used numerical libraries
caused some particle collisions to disappear and some were misidentified. This
suggests that their code has high numerical sensitivity.

We refer to [2] and [3], cf. also [1], and references therein for many other
examples from mathematical physics. In the next section, we just list some
areas where it is especially evident that we need a higher precision accuracy.

2. Why do we need higher accuracy arithmetic First, we give two
very simple but characteristic motivational examples.

* The corresponding author.

http://dx.doi.org/10.14708/ma.v50i2.7193
https://orcid.org/https://orcid.org/0000-0002-1505-0233
https://orcid.org/0000-0001-5244-6811

154 Review note on arbitrary precision

2.1. Ill-condition linear systems A first example is a very simple
computational problem, i.e. for given n + 1 equidistant points zp = k x h
for k = 0,...,n with h = 1/n on the segment [0, 1] find the coefficient of
Lagrange interpolation polynomial p(z) = Y, prz® in the standard basis
(representation) interpolating given values y , cf. e.g. § 2 in [22] or [10], i.e.

p(zr) = Yk =0,...,n.

Naturally, the simplest natural approach is to solve the linear system:

2
1 =z z5... 2 Po i)
2
1 xp zy... 2} P1 Y1
1 2 n
Typ Ty... Tp Pn UYn

Let us try to find the polynomial for n = 20 and y; = >}, :):;?, i.e. the
solution should be the constant coefficient vector with p(k) = 1 for all k. When
trying to solve the system using the GNU OCTAVE, cf. [6] the command:
p=polyfit(x,y,n) gives that

p= (1.017850, 0.821746, 1.828503,
—1.379965, 5.732167, —5.911756,

8.680575, —5.635452, 5.515481,
—1.437400, 2.045784, 0.644181,
1.095348, 0.980117, 1.003167,
0.999625, 1.000032, 0.999998,
1.000000, 1.000000, 1.000000)T

We see that the computed result is completely wrong. There are negative
values in p. Naturally, we can easily explain why this happens. We know
that it is because the linear system is extremely ill-conditioned, in this case,
we have that the condition number of the matrix equals to approximately
9.086¢ * 10'°. We computed the condition number using the GNU OCTAVE,
cf. [6], command: cond(V), while the Vandermonde matrix by V=vander(x).
Here x is the vector with the equidistant n+1 nodes. The condition number in
GNU Octave is computed utilizing SVD (Singular Value Decomposition), cf.
e.g. Theorem (6.4.10) in [22|. The computations were done in default octave
precision, i.e. in IEEE 64bit precision named also double precision. We see
that the condition number is of the order of the double-precision arithmetic.
It is worth mentioning that the used version of GNU Octave, cf. [6], uses the
QR decomposition, cf. e.g. § 4.7 in [22], to solve the system when a user calls
polyfit (). If a user calls the default linear solve operator i.e. backslash then
Octave utilizes LU decomposition computed by the Gaussian elimination al-
gorithm with partial pivoting, cf. e.g. § 4.1 in [22], which may give us a bit
different digits in the numerical solutions. The interpolation problem fortu-
nately may be solved in another way, e.g. using a divided difference algorithm

B. Szczygiet, L. Marcinkowski 155

which should solve it for the much higher degree of the polynomial, cf. § 2.1.3
in [22]. Nevertheless, there are many other problems where a higher precision
than the double one is necessary.

If we repeat solving the problem for n = 10 in IEEE 32-bit precision
arithmetic also named single precision, we get

p= (1.161945, 0.172458, 2.812910,
—1.223598, 2.672307, 0.206553,
1.235126, 0.958561, 1.003882,
0.999855, 1.000001)7

Again we see that the result is wrong since instead of the constant coefficient
vector we got the negative value of one coefficient. It is not surprising that
the situation got worse for smaller n, or equivalently we see that using double
precision improved the situation, i.e. we could solve the problem for larger
polynomial degrees. If someone wants to repeat the tests one can use the code
from § 2.4 on page 47 in [23], which is freely available online.

2.2. Solving Ordinary Differential Equation for a long time We
have a very simple toy example, namely, we consider the following boundary
value ODE problem: find u : [0,7] — R such that

" +u = 0 (1)
w(0) =u(T) = 1 (2)

Naturally, it is a linear ODE with constant coefficients and we can easily
compute the analytical solution: ur(t) = (/=7 4e7*)/(1+e~T). Nevertheless.
let’s try to solve it numerically by the shooting method, cf. e.g. § 18.1 in [1§]
or § 7.3.2 in [22], for T' = 17. If we apply the shooting method, we first look
for s such that the solution of the Initial Value Problem with the ODE (1)
and the following Initial Value:

Z’((O()))Zzls 3)

solves our BVP (1)-(2). The shooting method is based on solving the IVP
(1)-(3) with two different values of the initial value of derivative s in (3), e.g.
so = 0,81 = 1. We then get two functions ug,u;. Then it is easy to compute
= m};)uf% such that the solution of IVP (1)-(3) with this s solves the
original BV (2). The two IVPs (1)-(3) can be solved by a good IVP solver.
We will use a reliable black box GNU Octave solver lsode() which is a solver
from lsode math Fortran library, cf. e.g. [9, 19]. Let’s consider the computed
solution wuy, for some T € {1,...,16}.
In Tables 1-2 we see the following errors in s and wuy(T") (let up(T') de-
note the computed solution by Isode() at ¢t = T for the initial values of the

https://jcu.publi.cz/en/book/1803-vybrane-ulohy-resene-na-pocitaci-diskretni-a-numericka-matematika

156

Review note on arbitrary precision

Table 1: The first column contains the values of the end of the interval. The
second column is the real value of the derivative of the analytical solution at
the left end. The third column contains the computed value of the derivative
at the end left by the shooting method.

T u/-(0) 1o

1.0 | —4.621171573e — 01 | —4.621171552¢ — 01
4.0 | —9.640275801e — 01 | —9.640275826¢ — 01
7.0 | —9.981778976e — 01 | —9.981780246¢ — 01
10.0 | —9.999092043e¢ — 01 | —9.999094813e — 01
13.0 | —9.999954794e¢ — 01 | —9.999959072¢ — 01
16.0 | —9.999997749¢ — 01 | —1.000000358¢ + 00

Table 2: The first column contains the values of the end of the interval. While
the next two columns contain the relative error in s and in u(7).

r | B Oy,) -
1.0 | —4.37e — 09 | 7.25¢ — 08
4.0 | =2.62¢ — 09 | 8.93e¢ — 07
7.0 | —1.27e — 07 | 6.61le — 05
10.0 | =2.77e — 07 | 3.04e — 03
13.0 | —4.28¢ — 07 | 9.46e — 02
16.0 | —=5.83e — 07 | 2.59¢ + 00

derivative at the left end of the time interval: s} ,» computed by the shooting
method):

We see in the both tables that the error in s is not that bad, it grows
but we get at least seven-digit accuracy, while the error of the numerical
solution at the right end grows very rapidly and for the last values of T' gives
us completely wrong solutions. Both errors are above two (the absolute error
here is equal to the relative one). Naturally, it shows that solving the TVP
(1)-(3) requires higher precision arithmetic, and this is a very simple but a
good example of the need for higher accuracy in the case of a relatively long
computation time. For short time intervals, our problem can be solved in
double precision, but for a bit longer time we need higher accuracy. Again it
is worth mentioning that this problem can be solved by another numerical
approach, namely, we can use a Finite Difference Method, cf. e.g. § 7.4 in [22],
or a Finite Element Method, cf. e.g. [5], for the original BVP (1)-(2).

Those two simple examples can be easily resolved by different approaches,
but it is very important to note that most scientists in many branches of

B. Szczygiet, L. Marcinkowski 157

science like e.g. chemistry are not experts in advanced numerical methods
or even basic numerical algorithms. The simplest approach which requires
much higher precision may be for them a natural choice. Seeking the help of
experts may be very difficult if impossible and may hinder the development
of their research, in which scientific computation is just an important but not
a crucial part.

In general, higher precision arithmetic is needed among others e.g.

e ill-conditioned linear problems,

e computing periodic orbits in dynamical systems,

e simulations for a very long time,

e large scale summations,

e parallel computations - to reproduce the results, cf. e.g. [21],

e computer-assisted mathematical proofs, - sometimes one use alterna-
tively interval arithmetic, cf. e.g. [11, 15, 16, 20],

e high-precision computations e.g. computing zeros of Riemann Zeta Func-
tion, cf. [1].

3. Libraries for High-Precision arithmetic In this section, we will
briefly discuss some numerical libraries which enable us to use high or even
arbitrary-precision arithmetic.

Some commercial packages like Maple, cf. [11] or Mathematica, cf. [12],
enable users to use higher precision arithmetic. We will give some more de-
tails about the possibilities of using higher-precision arithmetic in MATLAB,
cf. [13], which seems the most popular commercial numerical computation
software package, and its free clone GNU OCTAVE, cf. [6].

3.1. Matlab and GNU octave In both software packages, the variable
precision arithmetic is available in their respective extra symbolic packages,
i.e. in Symbolic Math toolbox in MATLAB and Symbolic package in OC-
TAVE;, cf. [17]. The main function is vpa(x,N). It creates a variable-precision
floating point number of N digits. X may be a string, a sym (symbolic ex-
pression), or a double. A simple example in OCTAVE/MATLAB (executed
in OCTAVE):

>> vpa(sqrt (3))
Symbolic pkg v2.9.0:

Python communication link active,

158 Review note on arbitrary precision

SymPy v1.7.1.

ans = (sym) 1.7320508075688771931
766041234368

>> sqrt (3)

ans = 1.732050807568877

The last two lines show the standard double result of sqrt(3), i.e .v/3.

Other useful commands in OCTAVE /MATLAB are digits (N), vpasolve(),
sym(). The first sets/gets the number of digits in variable precision arithmetic.
The second, i.e. vpasolve(eqn,x,x0) solves numerically a symbolic equation for
variable x using initial guess x0, while sym defines symbols and numbers as
symbolic expressions. We will give another simple example:

>> x=sym(’x’)

X = (sym) x

>> eqn=x"2==2;

>> vpasolve(eqn,x,1.0)

ans = (sym) 1.414213562373095048801
6887242097

>> vpasolve (eqn,x,—1.0)

ans = (sym) —1.414213562373095048801
6887242097

>> vpasolve (eqn, x)

ans = (sym) 1.414213562373095048801
6887242097

>> digits (45)

>> vpasolve(eqn,x)

ans = (sym) 1.414213562373095048801
68872420969807856967188

The last parameter, i.e. an initial guess is optional. As we see we can
increase the default vpa precision (or decrease) using the digits () function.

There are also external libraries for high-precision arithmetic in MATLAB
(or OCTAVE). The first one is an open source high precision matrix library for
Matlab and GNU/Octave: GEM library, cf. https://gem-library.github.
io/gem/. The library implements two data types:

e gem - high-precision dense matrices,
e sgem - high precision sparse matrices

and many Matlab/Octave functions are overloaded.
It is worth noting that the vpa class of Matlab (or OCTAVE) does not
support sparse matrices formats and is quite slow compared to GEM.

https://gem-library.github.io/gem/
https://gem-library.github.io/gem/

B. Szczygiet, L. Marcinkowski 159

Another worth recommending extra toolbox for MATLAB is ADVAN-
PIX which is a Multiprecision Computing Toolbox, the MATLAB exten-
sion for computing with arbitrary precision. https://www.advanpix.com/.
This commercial toolbox adds to MATLAB a new higher-precision floating-
point numeric type and a large number of mathematical functions that can
compute with arbitrary precision, e.g. solvers for linear equations, nonlinear
solvers, singular value decomposition (SVD), numerical integration, optimiza-
tion ODEs, etc. It is possible to replace the standard floating point type of
MATLAB with multi-precision numbers and thus run old MATLAB codes
without extensive changes.

3.2. C/C++, Python etc There are several packages for higher preci-
sion that can be used in C/C++ codes. We will mention the most important
ones and some interfaces (wrappers) to some of them:

e GNU Multiple Precision Floating-Point Reliable Library (GNU MPFR
library), cf. https://www.mpfr.org/, [7],is a GNU C library for multiple-
precision floating-point computations with correct rounding. it is de-
pendent on GNU Multi-Precision Library (GNU GMP see below). - the
current newest version is version 4.1.1 released on November 17, 2022.
The MPFR is free, released under the GNU Lesser GPL license. It has
several extensions and interfaces mentioned below. It implements not
only simple arithmetic operations like “+” and “/” but also has a whole
set of mathematical functions like sin, sqrt, pow, log etc. MPFR does
not track the accuracy of numbers in the program or expression,

e MPFT a C multiple-precision interval arithmetic library, based on MPFR,
cf. https://gitlab.inria.fr/mpfi/mpfi. The MPFI has some of the
mathematical functions provided by MPFR,

e GNU MPC library is a library for multiple-precision complex arithmetic
based on the MPFR and GMP libraries,

e MPFRCPP is a C++ interface for MPFR. It has classes, templates,
and function objects,

e MPFR C-++ is another interface to MPFR. This wrapper introduces
a new C++ type for high-precision floating point numbers — mpreal
which contains low level mpfr t a custom C-language type of MPFR
that enables a representation of floating-point numbers, This enables a
user to use MPFR computations as simply as can be done with built-in
types double or float,

e gmpfrxx C-+- is another wrapper for both GMP (see below) and MPFR,

e Boost C++ libraries also have an interface for MPFR, it is a part of its
Multiprecision library,

https://www.advanpix.com/
https://www.mpfr.org/
https://gitlab.inria.fr/mpfi/mpfi

160 Review note on arbitrary precision

e SageMath, cf. https://www.sagemath.org/, is a free open-source math
software system built on top of many open-source packages like SymPy,
NumPy, and SciPy. It is a computer system based on Python language.
it contains Arbitrary Precision Real Numbers, it is a binding to MPFR
arbitrary-precision floating-point library,

¢ GPM - The GNU Multiple Precision Arithmetic Library, cf. http:
//gmplib.org/ - it is a free library for arbitrary precision arithmetic in-
cluding signed integers, rational numbers, and fl numbers. The current
stable release is 6.2.1 released in November 2020,

e PARI/GP, cf. https://pari.math.u-bordeaux.fr/, is a computer al-
gebra system designed for fast computations in number theory, but it
also has functions to compute with matrices, polynomials, power series,
algebraic numbers, etc. PARI is also available as a C library,

e MPFUN2020, ARPEC, cf. https://www.davidhbailey.com/dhbsoftware/

- high precision software packages developed by David H. Bailey. - the
first one is in 2 versions - a stand-alone one and the 2nd based on MPFR.
ARPREC is an older arbitrary precision library for Fortran and C++,

e CLN - Class Library for Numbers, cf. https://www.ginac.de/CLN/ -
CLN is a C++ library for computations with all types of numbers in
any arbitrary precision. The current version is 1.3.6,

e Arb - a C library for arbitrary-precision ball arithmetic, cf. https:
//arblib.org/. It is for rigorous real and complex arithmetic with any
precision. Numerical errors are estimated using ball arithmetic, which
is a type of interval arithmetic,

and others...

4. Eigen library In this section, we will briefly describe the contribution
of the first author of this paper to the development of the possibility of using
high-precision arithmetic in an open-source library Eigen, cf. [8]. Eigen is a
C++ template library for numerical linear algebras, in particular, it supports
of types of matrices, even sparse matrices, all standard numerical types, as
well as standard matrix factorization or decompositions like LU, Cholesky,
QR SVD, eigendecompositions, etc

The first author B.S. modified the library MPFR C++-, which is a wrapper
(interface) for the C library MPFR (which cannot be used in EIGEN as a
standard C library). MPFR C++ enables a user to utilize numbers from
MPFR as other numerical floating point types, so that any other library can
use these numbers. Unfortunately, MPFR C-++ uses dynamically allocated
memory for a mantissa of a given precision fl variable. This breaks memory
coherence and adds another memory jump on every access. The version of B.S.

https://www.sagemath.org/
http://gmplib.org/
http://gmplib.org/
https://pari.math.u-bordeaux.fr/
https://www.davidhbailey.com/dhbsoftware/
https://www.ginac.de/CLN/
https://arblib.org/
https://arblib.org/

B. Szczygiet, L. Marcinkowski 161

creates a new generic type, a template for a variable of given precision, where
the mantissa is part of the variable. This should improve the way memory
is accessed (jump to memory is still there, but in the area right next to it,
which is likely to be in the cache already). The disadvantage is the larger size
of the variable.

5. Summary In this note, we discuss an urgent need of using arbitrary
precision arithmetic and present briefly how to use it in MATLAB/OCTAVE.
We also present a short overview of the main C/C- libraries for arbitrary
precision arithmetic.

Acknowledgments: The first author Barttomiej Szczygiet was partially supported by the
Ministry of Science and Education and Science, Poland - Project No. DI2016 0001 46.

1] D. H. Bailey and J. M. Borwein. High-precision numerical integration:
g g
progress and challenges. J. Symbolic Comput., 46(7):741-754, 2011. ISSN
0747-7171. doi: 10.1016/j.js¢.2010.08.010. Cited on p. 153.

[2] D. H. Bailey, R. Barrio, and J. M. Borwein. High-precision computation:
mathematical physics and dynamics. Appl. Math. Comput., 218(20):
10106-10121, 2012. ISSN 0096-3003. doi: 10.1016/j.amc.2012.03.087.
MR 2921767. Cited on p. 153.

[3] D. H. Bailey, R. Barrio, and J. M. Borwein. High-precision arith-
metic in mathematical physics. Mathematics, 3(2):337-367, 2015. doi:
10.3390/math3020337. Cited on p. 153.

[4] G. Beliakov and Y. Matiyasevich. A parallel algorithm for calculation of
determinants and minors using arbitrary precision arithmetic. BIT, 56
(1):33-50, 2016. ISSN 0006-3835. doi: 10.1007/s10543-015-0547-7. Cited
on p. 157.

[5] D. Braess. Finite elements. Cambridge University Press, Cam-
bridge, third edition, 2007. ISBN 978-0-521-70518-9; 0-521-70518-5.
doi: 10.1017/CB09780511618635. URL https://doi.org/10.1017/
CB09780511618635. Theory, fast solvers, and applications in elasticity
theory, Translated from the German by Larry L. Schumaker. Cited on
p. 156.

[6] J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring. GNU Oc-
tave version 6.1.0 manual: o high-level interactive language for numeri-
cal computations, 2020. URL https://www.gnu.org/software/octave/
doc/v6.1.0/. Cited on pp. 154 and 157.

[7] L. Fousse, G. Hanrot, V. Lefévre, P. Pélissier, and P. Zimmermann.
MPFR: A multiple-precision binary floating-point library with correct

http://dx.doi.org/10.1016/j.jsc.2010.08.010
http://dx.doi.org/10.1016/j.amc.2012.03.087
http://www.ams.org/mathscinet-getitem?mr=2921767&return=pdf
http://dx.doi.org/10.3390/math3020337
http://dx.doi.org/10.3390/math3020337
http://dx.doi.org/10.1007/s10543-015-0547-z
http://dx.doi.org/10.1017/CBO9780511618635
https://doi.org/10.1017/CBO9780511618635
https://doi.org/10.1017/CBO9780511618635
https://www.gnu.org/software/octave/doc/v6.1.0/
https://www.gnu.org/software/octave/doc/v6.1.0/

162

Review note on arbitrary precision

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

rounding. ACM Transactions on Mathematical Software, 33(2):13:1-15,
2007. doi: 10.1145/1236463.1236468. Cited on p. 159.

G. Guennebaud, B. Jacob, et al. Eigen v3.4.0. http://eigen.tuxfamily.org,
August 2021. Cited on p. 160.

A. C. Hindmarsh. ODEPACK, a systematized collection of ODE solvers.
InS. R.S.,,C. M., P. R.,, A. W. F., and V. R., editors, Scientific Com-
puting. Applications of Mathematics and Computing to the Physical Sci-
ences, pages 55—64. North-Holland, Amsterdam, 1983. Cited on p. 155.

D. Kincaid and W. Cheney. Numerical analysis. Brooks/Cole Publish-
ing Co., Pacific Grove, CA, second edition, 1996. ISBN 0-534-33892-5.
Mathematics of scientific computing. MR 1388777. Cited on p. 154.

Maple. Maple, Maplesoft, a division of Waterloo Maple Inc., 2022. URL
https://hadoop.apache.org. Cited on p. 157.

Mathematica. Mathematica, Version 13.2, Wolfram Research, Inc., 2022.
URL https://www.wolfram.com/mathematica. Cited on p. 157.

MatLab. Matlab, version 9.13 (r2022a), The MathWorks Inc., 2022.
Cited on p. 157.

K. R. Meyer and D. S. Schmidt, editors. Computer aided proofs in analy-
s1s, volume 28 of The IMA Volumes in Mathematics and ils Applications,
1991. Springer-Verlag, New York. ISBN 0-387-97426-1. doi: 10.1007/978-
1-4613-9092-3. Cited on p. 157.

R. E. Moore. Interval tools for computer aided proofs in analysis. In
Computer aided proofs in analysis (Cincinnati, OH, 1989), volume 28 of
IMA Vol. Math. Appl., pages 211-216. Springer, New York, 1991. doi:
10.1007/978-1-4613-9092-3 17. Cited on p. 157.

M. T. Nakao, M. Plum, and Y. Watanabe. Numerical verification meth-
ods and computer-assisted proofs for partial differential equations, vol-
ume 53 of Springer Series in Computational Mathematics. Springer,
Singapore, 2019. ISBN 978-981-13-7668-9; 978-981-13-7669-6. doi:
10.1007/978-981-13-7669-6. MR 3971222. Cited on p. 157.

Octave. GNU Octave Symbolic Package, August 2022. URL https:
//gnu-octave.github.io/packages/symbolic/. Cited on p. 157.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical recipes. The art of scientific computing. Cambridge University
Press, Cambridge, third edition, 2007. ISBN 978-0-521-88068-8. Section
18.1 The shooting method. MR 2371990. Cited on p. 155.

http://dx.doi.org/10.1145/1236463.1236468
http://www.ams.org/mathscinet-getitem?mr=1388777&return=pdf
https://hadoop.apache.org
https://www.wolfram.com/mathematica
http://dx.doi.org/10.1007/978-1-4613-9092-3
http://dx.doi.org/10.1007/978-1-4613-9092-3
http://dx.doi.org/10.1007/978-1-4613-9092-3_17
http://dx.doi.org/10.1007/978-1-4613-9092-3_17
http://dx.doi.org/10.1007/978-981-13-7669-6
http://dx.doi.org/10.1007/978-981-13-7669-6
http://www.ams.org/mathscinet-getitem?mr=3971222&return=pdf
https://gnu-octave.github.io/packages/symbolic/
https://gnu-octave.github.io/packages/symbolic/
http://www.ams.org/mathscinet-getitem?mr=2371990&return=pdf

B. Szczygiet, L. Marcinkowski 163

[19]

[20]

[21]

[22]

[23]

K. Radhakrishnan and A. C. Hindmarsh. Description and use of Isode,
the Livermore solver for ordinary differential equations. Technical Re-
port UCRL-ID-113855, Lawrence Livermore National Lab. (LLNL), Liv-
ermore, CA (United States), 12 1993. Cited on p. 155.

S. M. Rump. Verification methods: rigorous results using floating-point
arithmetic. Acta Numer., 19:287-449, 2010. ISSN 0962-4929. doi:
10.1017/5096249291000005X. MR, 2652784. Cited on p. 157.

V. Stoddent, D. H. Bailey, J. Borwein, R. J. LeVeque, W. Rider, and
W. Stein. Setting the default to reproducible. Reproducibility in compu-
tational and experimental mathematics. Technical report, The Institute
for Computational and Experimental Research in Mathematics, February
2013. URL http://faculty.washington.edu/rjl/pubs/icerm2012/
icerm_report.pdf. Cited on p. 157.

J. Stoer and R. Bulirsch. Introduction to numerical analysis, volume 12 of
Texts in Applied Mathematics. Springer-Verlag, New York, third edition,
2002. ISBN 0-387-95452-X. doi: 10.1007/978-0-387-21738-3. Translated
from the German by R. Bartels, W. Gautschi and C. Witzgall. Cited
on pp. 154, 155, and 156.

J. Valdman. Vybrané ulohy 7eSené na pocitaci: diskréini a numerickd
matematika. Jiholeskd univerzita v éeskych Budégjovicich, 2022. ISBN
978-80-7394-905-1. In Czech. Cited on p. 155.

REFERENCES

Przegladowa notka o arytmetyce zmiennopozycyjnej
dowolnej precyzji
Barttomiej Szczygiet, Leszek Marcinkowski

Streszczenie W tej pracy przedstawiamy krotka przegladowa notke na temat aryt-
metyki zmiennopozycyjnej dowolnej precyzji. Przedstawiamy dwa proste przyktady
pokazujace konieczno$¢ wykorzystania takiej arytmetyki.

Omawiamy uzycie arytmetyki zmiennopozycyjnej dowolnej precyzji w MATLABie-
/Octave’ie 1 dalej omawiamy krotko kilka podstawowych, w szczegblnosci w C/C++,
bibliotek zawierajacych arytmetyke dowolnej precyzji dla kodéw (programéw) nume-
rycznych dla zastosowan w obliczeniach naukowych. Ostatecznie omawiamy wklad
jednego z autorow w rozwdj biblioteki dla arytmetyki dowolnej precyzji.

Klasyfikacja tematyczna AMS (2010): 65G50; 68W30; 65F05.

Stowa kluczowe: analiza numeryczna, arytmetyka zmiennopozycyjna dowolnej pre-
cyzji, obliczenia naukowe.

http://dx.doi.org/10.1017/S096249291000005X
http://dx.doi.org/10.1017/S096249291000005X
http://www.ams.org/mathscinet-getitem?mr=2652784&return=pdf
http://faculty.washington.edu/rjl/pubs/icerm2012/icerm_report.pdf
http://faculty.washington.edu/rjl/pubs/icerm2012/icerm_report.pdf
http://dx.doi.org/10.1007/978-0-387-21738-3
https://jcu.publi.cz/en/book/1803-vybrane-ulohy-resene-na-pocitaci-diskretni-a-numericka-matematika
http://wydawnictwa.ptm.org.pl/index.php/matematyka-stosowana/article/viewArticle/7193

164 Review note on arbitrary precision

Barttomiej Szczygiet was born in 1985 in Poland. He studied
Applied Mathematics at the Faculty of Mathematics, Informa-
tics, and Mechanics at the University of Warsaw (MIM UW).
In 2016 he received a B.Sc. degree at MIM UW with the the-
sis Percolation thresholds for discrete-continuous models with
nonuniform probabilities of bond formation. He later became
a Ph.D. student at MIMUW. He co-authored two papers pu-
blished in internationally recognized journals: Physical Review
and Applied Optics. He participated in three scientific projects
being a leader in one of them. As a student he also was gran-
ted two scholarships by the Warsaw Center of Mathematical Sciences and the Polish
Ministry of Education, respectively. His current scientific interests are physics, com-
putational mathematics, arbitrary precision arithmetic, and their applications.

Leszek Marcinkowski received an M.Sc. from the Faculty of
Mathematics, Informatics, and Mechanics at the University of
Warsaw (MIM UW) in 1994. The doctoral degree in mathema-
tical sciences was awarded to him in 1999 by the Scientific Co-
uncil of MIM UW. Habilitation in mathematical sciences was
granted in 2010 by the Scientific Council of MIM UW. He had
visiting research at the Department of Computer Science at the
University of Colorado at Boulder, Center for Applied Scien-
tific Computing in Laurence Livermore National Laboratory,
USA, and Shenzhen Institute of Advance Technology (SIAT)
-Chinese Academy of Science, China. References to his research papers are listed in
the Heidelberg Academy of Sciences bibliography database known as zbMath un-
der ai:Marcinkowski.Leszek, in MathSciNet under ID:615388 and Scopus under AU-
ID:6602236217. His current research interests are focused on discretization methods
and parallel solvers for partial differential equations. In particular, he is interested
in discretizations built on nonmatching grids and domain decomposition methods.

BARTLOMIEJ SzCZYGIEL

UNIVERSITY OF WARSAW

FacuLty oF MATHEMATICS, INFORMATICS, AND MECHANICS, BANACHA 2, 02-097 WARszawAa, PoLAND
E-MAIL: bartekltg@gmail.com

LEszEK MARCINKOWSKI

UNIVERSITY OF WARSAW

FacuLty oF MATHEMATICS, INFORMATICS, AND MECHANICS, BANACHA 2, 02-097 WARszawA, PoLAND
E-malL: Imarcin@mimuw.edu.pl

(Received: 3rd of January 2023; revised: 11th of January 2023)

https://zbmath.org/authors/?q=Marcinkowski%2C+Leszek
https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=615388
https://www.scopus.com/authid/detail.uri?authorId=6602236217
https://www.scopus.com/authid/detail.uri?authorId=6602236217
https://orcid.org/https://orcid.org/0000-0002-1505-0233
https://orcid.org/0000-0001-5244-6811

