Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 32, No. 3 | art. no. e151693
Tytuł artykułu

Induced blue phase and twist grain boundary phase in binary mixtures of chiral calamitic and achiral hockey stick-shaped liquid crystals

Treść / Zawartość
Warianty tytułu
Konferencja
20th Optics of Liquid Crystals Conference - OLC' 2023, Szczecin, Poland
Języki publikacji
EN
Abstrakty
EN
Frustrated phases in chiral liquid crystalline systems, such as the blue phase (BP) and the twist grain boundary (TGB) phase, can create new opportunities in liquid crystal research. These frustrated phases have unique optical properties which can be used for specific applications. A new binary mixture system composed of a chiral rod-like ferroelectric liquid crystal and an achiral hockey stick-shaped compound was designed. This binary system exhibits induced frustration, resulting in the emergence of the BP-III and TGB*A phases in addition to the chiral ferroelectric Smectic-C* phase. We report a comprehensive study on several binary mixtures (xH-22.5= 0.162, 0.25, 0.396, 0.562) designed of a chiral ferroelectric liquid crystal derived from the lactic acid, namely 4-(octyloxy)phenyl 3-methoxy-4-((4-((2-(pentyloxy)propanoyl)oxy)benzoyl)oxybenzoate and achiral hockey stick-shaped compound, namely (E)-4-((E-((3-(decyloxy)-2-methylphenyl)imino)methyl)-phenyl 3-(4-(dodecyloxy)phenyl)acrylate. These mixtures induced the blue phase (BP-III, ~2.5–6.2K)and the twist grain boundary Smectic-A*phase (TGB*A ~1.8–6K). Polarizing optical microscopy, birefringence, and dielectric spectroscopy were employed to investigate the BP-III and TGB*A phases, as those techniques provide insights into their structural and dynamic properties. The ferroelectric behaviour of the SmC* mesophase was investigated by electro-optics. The obtained results are discussed in relation to the molecular structures of the used materials.
Wydawca

Rocznik
Strony
art. no. e151693
Opis fizyczny
Bibliogr. 63 poz., rys., tab., wykr.
Twórcy
  • Department of Physics, University of North Bengal, Siliguri-734013, West Bengal, India
  • Department of Physics, University of North Bengal, Siliguri-734013, West Bengal, India
  • Department of Physics, University of North Bengal, Siliguri-734013, West Bengal, India, mkdnbu@yahoo.com
  • Institute of Physics, Czech Academy of Science, 18200, Prague, Czech Republic
  • Institute of Physics, Czech Academy of Science, 18200, Prague, Czech Republic
Bibliografia
  • [1] Goodby, J. W. et al. Characterization of a new helical smectic liquid crystal. Nature 337, 449-452 (1989). https://doi.org/10.1038/337449a0.
  • [2] Lagerwall, J. P. F. & Giesselmann, F. Current topics in smectic liquid crystal research. Chem. Phys. Chem. 7, 20-45 (2006). https://doi.org/10.1002/cphc.200500472.
  • [3] Lee, M. et al. Liquid crystalline blue phase I observed for a bent-core molecule and its electro-optical performance. J. Mater. Chem. 20, 5813-5816 (2010). https://doi.org/10.1039/C0JM01087A.
  • [4] Wright, D. C. & Mermin, N. D. Crystalline liquids: the blue phases. Rev. Mod. Phys. 61, 385-432 (1989). https://doi.org/10.1103/RevModPhys.61.385.
  • [5] Liquid Crystalline Functional Assemblies and Their Supramolecular Structures. in Structure and Bonding (ed. Kato, T.) 128 (Springer, New York, 2008).
  • [6] Otón, E., Netter, E., Nakano, T., Katayama, Y. D. & Inoue, F. Monodomain blue phase liquid crystal layers for phase modulation. Sci. Rep. 7, 44575 (2017). https://doi.org/10.1038/srep44575.
  • [7] Otón, E. et al. Orientation control ofideal blue phase photonic crystals. Sci. Rep. 10, 10148 (2020). https://doi.org/10.1038/s41598-020-67083-6.
  • [8] Otón, E., Morawiak, P., Gaładyk, K., Oton, J. M. & Piecek, W. Fast self-assembly of macroscopic blue phase 3D photonic crystals. Opt. Express 28, 18202-18211 (2020). https://doi.org/10.1364/OE.393197.
  • [9] Orzechowski, K. et al. Achiral nanoparticle-enhanced chiral twist and thermal stability of blue phase liquid crystals. ACS Nano 16, 20577-20588 (2022). https://doi.org/10.1021/acsnano.2c07321.
  • [10] Crooker, P. P. Blue Phases. in Chirality in Liquid Crystals (eds. Kitzerow, H. S. & Bahr, C.) 186-222 (Springer, New York, 2001).
  • [11] Kikuchi, H. Liquid crystalline blue phases. Struct. Bond. 128, 99-117 (2008). https://doi.org/10.1007/430_2007_075.
  • [12] Rao, L., Ge, Z. & Wu, S. T. Viewing angle controllable displays with a blue-phase liquid crystal cell. Opt. Express 18, 3143-3148 (2010). https://doi.org/10.1364/OE.18.003143.
  • [13] Lu, S.-Y. & Chien, L.-C. Electrically switched color with polymer-stabilized blue phase liquid crystalls. Opt. Lett. 35, 562-564 (2010).https://doi.org/10.1364/OL.35.000562.
  • [14] Liquid Crystals - Applications and Uses. Vol. 2. (ed. Bahadur, B.)(Litton Systems Canada, 1991). https://doi.org/10.1142/1299.
  • [15] Gray, G. W. & Kelly, S. M. Liquid crystals for twisted nematicdisplay devices. J. Mater. Chem. 9, 2037-2050 (1999).https://doi.org/10.1039/A902682G.
  • [16] Taushanoff, S. et al. Stable amorphous blue phase of bent-corenematic liquid crystals doped with a chiral material. J. Mater. Chem.20, 5893-5898 (2010). https://doi.org/10.1039/C0JM00690D.
  • [17] Kašpar, M. et al. New chlorine-substituted liquid crystals possessingfrustrated TGBA and SmQ phases. Liq. Cryst. 35, 641-651 (2008).https://doi.org/10.1080/02678290802056212.
  • [18] Cigl, M. et al. Photosensitive chiral self-assembling materials:significant effects of small lateral substituents. 4, 5326-5333 (2016).https://doi.org/10.1039/C6TC01103A.
  • [19] Poryvai, A., Bubnov, A., Pociecha, D., Svoboda, J. & Kohout, M.The effect of terminal n-carboxylate chain length on self-assembling and photosensitive properties of lactic acid derivatives. J. Mol. Liq.275, 829-838 (2019).https://doi.org/10.1016/j.molliq.2018.11.058.
  • [20] Bubnov, A. et al. Eutectic behaviour of binary mixtures composedby two isomeric lactic acid derivatives. Ferroelectrics 495, 105-115(2016). https://doi.org/10.1080/00150193.2016.1136776.
  • [21] Das, B. et al.Mesomorphic and structural properties of liquid crystalpossessing a chiral lactate unit. J. Mol. Struct. 1013, 119-125(2012). https://doi.org/10.1016/j.molstruc.2012.01.017.
  • [22] Renn, S. R. & Lubensky, T. C. Abrikosov dislocation lattice in amodel of the cholesteric to smectic-A transition. Phys. Rev. A 38, 2132-2147 (1988). https://doi.org/10.1103/PhysRevA.38.2132.
  • [23] Goodby, J. W. et al. A new molecular ordering in helical liquidcrystals. J. Am. Chem. Soc. 111, 8119-8125( 1989).https://doi.org/10.1021/JA00203A009.
  • [24] Dierking, I. A review of textures of the TGBA∗ phase under different anchoring geometries. Liq. Cryst. 26, 83-95 (1999). https://doi.org/10.1080/026782999205588.
  • [25] Sahoo, R. & Dhara, S. A short review on the rheology of twist grain boundary-A and blue phase liquid crystals. Fluids 3, 1-15 (2003). https://doi.org/10.3390/fluids3020026.
  • [26] Chakraborty, S. et al. Induced frustrated twist grain boundary liquid crystalline phases in binary mixtures of achiral hockey stick-shaped and chiral rod-like materials. J. Mater. Chem. C 7, 10530-10543 (2019). https://doi.org/10.1039/C9TC02917F.
  • [27] Barman, B., Das, B., Das, M. K., Hamplova, V. & Bubnov, A. Effect of molecular structure on dielectric and electro-optic properties of chiral liquid crystals based onlactic acid derivatives. J. Mol. Liq. 283, 472-481 (2019). https://doi.org/10.1016/j.molliq.2019.03.071.
  • [28] Das, M. K., Barman, B., Das, B., Hamplova, V. & Bubnov, A. Dielectric properties of chiral ferroelectric liquid crystalline compounds with three aromatic rings connected by ester groups. Crystals 9, 473 (2019). https://doi.org/10.3390/cryst9090473.
  • [29] Bubnov, A. et al. Effect of lateral methoxy substitution on mesomorphic and structural properties of ferroelectric liquid crystals. Liq. Cryst. 35, 1329-1337 (2008). https://doi.org/10.1080/02678290802585525.
  • [30] Chakraborty, A. et al. New hockey stick compounds with a lateral methyl group showing nematic, synclinic and anticlinic smectic C phases. Liq. Cryst. 38, 1085-1097 (2011). https://doi.org/10.1080/02678292.2011.596227.
  • [31] Prasad, A. & Das, M. K. Optical birefringence studies of a binary mixture with the nematic-smectic-Ad-re-entrant nematic phase sequence. J. Phys. Conds. Matter 22, 195106 (2010). https://doi.org/10.1088/0953-8984/22/19/195106.
  • [32] Sarkar, G. K., Das, B., Das, M. K., Baumeister, U. & Weissflog, W. Structural investigations of a non-calamitic shaped liquid crystalline compound showing unusual phases. Mol. Cryst. Liq. Cryst. 540, 188-195 (2011). https://doi.org/10.1080/15421406.2011.568840.
  • [33] Sarkar, S. K. & Das, M. K. Critical behaviour at the nematic-smectic A phase transition in a binary mixture showing induced nematic phase. RSC Adv. 4, 19861-19868 (2014). https://doi.org/10.1039/C4RA00439F.
  • [34] Chakraborty, A., Das, M. K., Das, B., Baumeister, U. & Weissflog, W. Optical, dielectric and visco-elastic properties of a few hockey stick-shaped liquid crystals with a lateral methyl group. J. Mater. Chem. C 1, 7418-7429 (2013). https://doi.org/10.1039/C3TC31565G.
  • [35] Sarkar, S. K. & Das, M. K. Critical behavior of dielectric permit-tivity in the vicinity of nematic-isotropic and smectic-nematic phase transitions in smectogenic binary mixtures. Fluid Ph. Equilibria 365, 41-49 (2014). https://doi.org/10.1016/j.fluid.2013.12.010.
  • [36] Pramanik, A., Das, M. K., Das, B., Zurowska, M. & Dabrowski, R. Electro-optical properties of a new series of fluorinated antiferroelectric orthoconic liquid crystalline esters. Liq. Cryst. 42, 412-421 (2015). https://doi.org/10.1080/02678292.2014.996792.
  • [37] Chaudhury, A., Malik, P., Mehra, R. & Raina, K. K. Influence of ZnO nanoparticle concentration on electro-optic and dielectric properties of ferroelectric liquid crystal mixture. J. Mol. Cryst. 188, 230-236 (2013). https://doi.org/10.1016/j.molliq.2013.09.020.
  • [38] Chakraborty, S., Das, M. K., Keith, C. & Tschierske, C. Study of ferro-and anti-ferroelectric polar order in mesophases exhibited by bent core mesogens. Mater. Adv. 1, 3545-3555 (2020). https://doi.org/10.1039/D0MA00678E.
  • [39] Gim, M.-J., Han, G., Choib, S.-W. & Yoon, D. K. Thermal phase transition behaviours of the blue phase of bent-core nematogen and chiral dopant mixtures under different boundary conditions. Soft Matter 10, 8224-8228 (2014). https://doi.org/10.1039/C4SM01662A.
  • [40] Saeva, F. D. & Wysocki, J. Induced circular dichroism in cholesteric liquid crystals. J. Am. Chem. Soc. 93, 5928-5929 (1971). https://doi.org/10.1021/ja00751a075.
  • [41] Slaney, A. J., Nishiyama, S. P., Styring, P. & Goodby, J. W. Twist inversion in a cholesteric material containing a single chiral centre. J. Mater Chem. 2, 805-810 (1992). https://doi.org/10.1039/JM9920200805.
  • [42] Dierking, I. et al. Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding SC* phase in thin liquid crystal cells. Liq. Cryst. 13, 45-55 (1993). https://doi.org/10.1080/02678299308029052.
  • [43] Hiller, S., Pikin, S. A., Haase, W., Goodby, J. W. & Nishiyama, I. Relaxation processes in the antiferroelectricphase as studied by dielectric spectroscopy. Jpn. J. Appl. Phys. 33, L1170-L1173 (1994). https://doi.org/10.1143/JJAP.33.
  • [44] Buivyads, M. et al. Collective and non-collective excitations in antiferroelectric and ferrielectric liquid crystals studied by dielectric relaxation spectroscopy and electro-optic measurements. Liq. Cryst. 23, 723-739 (1997). https://doi.org/10.1080/026782997208000.
  • [45] Huang, C.-C., Hsu, C.-C., Chen, L.-W. & Cheng, Y.-L. The effect of position of (S)-2-octyloxy tail on theformation of frustrated blue phase andantiferroelectric phase in Schiff base liquid crystals. Soft Matter 10, 9343-9351 (2014). https://doi.org/10.1039/C4SM01829J.
  • [46] Kirsch, P. Design and synthesis of nematic liquid crystals with negative dielectric anisotropy. Liq. Cryst. 26, 449-452 (1999). https://doi.org/10.1080/026782999205236.
  • [47] Kirsch, P., Reiffenrath, V. & Bremer, M. Nematic liquid crystals with negative dielectric anisotropy: Molecular design and synthesis. Synlett 4, 389-396(1999). https://doi.org/10.1055/s-1999-2619.
  • [48] Goodby, J. W., Patel, J. S. & Chin, E. Rotational damping and the spontaneous polarization in ferroelectric liquid crystals. J. Phys. Chem. 91, 5151-5152 (1987). https://doi.org/10.1021/j100304a003.
  • [49] Chandani, A. D. L. et al. Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization. Jpn. J. Appl. Phys. 27, L729-L732 (1988). https://doi.org/10.1143/JJAP.27.L729.
  • [50] Yurtseven, H. & Kavruk, D. Analysis of the spontaneous polarization and the dielectric constant near the ferroelectric phase transition in TSCC. Ferroelectrics 367, 190-200 (2008). https://doi.org/10.1080/00150190802375425.
  • [51] Vaksman, V. M. & Panarin, Y. Measurement of ferroelectric liquid crystal parameters. Mol. Mats. 1, 147-154 (1992). https://doi.org/10.21427/D7FF8R.
  • [52] Hemine, J. et al. Dynamical properties of ferroelectricchiral liquid crystals by electro-optical and dielectric spectroscopy. Spectrosc. Lett. 41, 285-291 (2008). https://doi.org/10.1080/00387010802286684.
  • [53] Allagulov, A. I., Pikin, S. A. & Chigrinov, V. G. Bistable and monostable polarized states of a liquid-crystalline ferroelectric in an electric field. Liq Cryst. 5, 1099-1105 (1989). https://doi.org/10.1080/02678298908026413.
  • [54] Misra, A. K., Srivastava, A. K., Shukla, J. P. & Manohar, R. Dielectric and electro-optical parameters of two ferroelectric liquid crystals: A comparative study. Phys. Scr. 78, 065602 (2008). https://doi.org/10.1088/0031-8949/78/06/065602.
  • [55] Lyuu, J.-F., Chen, C.-C. & Lee, J.-Y. The anchoring energy coefficient of dye guest-host ferroelectric liquid crystals. Mol. Cryst. Liq. Cryst. 329, 99-112 (1999). https://doi.org/10.1080/10587259908025930.
  • [56] Manohar, R., Yadav, S. P., Pandey, K. K., Srivastava, A. K. & Misra, A. K. Comparative study of dielectric and electrooptical properties of pure and polymer ferroelectric liquid crystal composites. J. Polym. Res. 18, 435-441 (2011). https://doi.org/10.1007/s10965-010-9434-0.
  • [57] Seomun, S. S., Takanishi, Y., Ishikawa, K., Takezoe, H. & Fukuda, A. Evolution of switching characteristics from tristable to V-shaped in an apparently antiferroelectric liquid crystal. Jpn. J. Appl. Phys. 36, 3586-3590 (1997). https://doi.org/10.1143/JJAP.36.3586.
  • [58] Marino, L. et al. Dielectric characterization of an orthoconic antiferroelectric liquid crystal mixture. Mol. Cryst. Liq. Cryst. 558, 120-126 (2012). https://doi.org/10.1080/15421406.2011.653717.
  • [59] Nayek, P., Ghosh, S., Roy, S., Majumder, T. P. & Dabrowski, R. Electro-optic and dielectric investigations of a perfluorinated com-pound showing orthoconic antiferroelectric liquid crystal. J. Mol. Liq. 175, 91-96 (2012). https://doi.org/10.1016/j.molliq.2012.08.020.
  • [60] Ghosh, S., Nayek, P., Roy, S. Kr., Majumder, T. P. & Dabrowski, R. Dielectric relaxation spectroscopy and electro-optical studies of a new, partially fluorinated orthoconic antiferroelectric liquid crystal material exhibiting V-shaped switching. Liq. Cryst. 37, 369-375 (2010). https://doi.org/10.1080/02678291003611367.
  • [61] Havriliak, S. & Negami, S. A complex plane analysis of alpha-dispersions in some polymer systems. J. Polym. Sci. 14, 99-117 (1966). https://doi.org/10.1002/polc.5070140111.
  • [62] Panarian,Y. P., Kalinovskaya, O. & Vij, J. K. The investigation of the relaxation processes in antiferroelectric liquid crystals by broad band dielectric and electro-optic spectroscopy. Liq. Cryst. 25, 241-252 (1998). https://doi.org/10.1080/026782998206399.
  • [63] Pandey, M. B., Dhar, R. & Dąbrowski, R. Dielectric spectroscopy of a newly synthesized chlorinated analogue of MHPOBC antiferro-electric loquid crystals. Ferroelectrics 243, 83-100 (2006). https://doi.org/10.1080/00150190600962119.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-892d92a8-8342-4a4e-b4ab-52cd95a60f1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.