Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 12, No. 3 | 163--174
Tytuł artykułu

Multiscale modelling of stress and strain partitioning in high strength dual phase steels

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Wieloskalowe modelowanie rozdziału naprężeń i odkształceń w stalach dwufazowych o wysokiej wytrzymałości.
Języki publikacji
EN
Abstrakty
EN
Multiscale modelling of stress and strain partitioning in DP steel was carried out using both realistic microstructure-based RVE models as well as stochastic microstructures generated by Monte Carlo method. The stochastic microstructure models were shown to resemble that of realistic microstructures, enabling research on the specific aspects of the microstructure that could be difficult to control and study during experimental work. One such feature of the realistic microstructures studied in this work was the grain size and microstructure morphology. The microstructures were generated with varying average grain sizes while all other parameters, such as boundary conditions, material properties and volume fractions of martensite and ferrite were kept constant. It is found that the effect of grain size is much more pronounced during the initial localisation of the plastic deformation at and around the interface of the phases. In addition, the decrease in ductility and increase in strength of the DP steels are directly related to the refinement of grain sizes of each phase and the stress-strain partitioning in between them.
PL
Wieloskalowe modelowanie rozdziału naprężeń i odkształceń w stalach dwufazowych (DP) przeprowadzono wykorzystując zarówno reprezentatywny element objętości (ang. representative volume element RVE) z rzeczywistą mikrostrukturą jak i stochastyczną mikrostrukturę wygenerowaną metodą Monte Carlo. Stochastycznie wygenerowane mikrostruktury przypominały te rzeczywiste, umożliwiając badanie specyficznych cech mikrostruktury trudnych do analizowania metodami doświadczalnymi. Jedną z takich cech była wielkość ziarna i morfologia ziaren. Mikrostruktury wygenerowano stosując różne średnie wielkości ziarna podczas gdy pozostałe parametry, takie jak warunki brzegowe, własności materiału oraz ułamek objętości martenzytu i ferrytu pozostawały niezmienione. W konsekwencji zaobserwowano, że wpływ wielkości ziarna jest bardzie widoczny w czasie inicjalizacji lokalizacji odkształcenia plastycznego oraz wokół powierzchni międzyfazowych. Dodatkowo stwierdzono, że spadek plastyczności i wzrost wytrzymałości stali DP są związane z rozdrobnieniem ziarna każdej z faz oraz z rozdziałem naprężeń i odkształceń między fazami.
Wydawca

Rocznik
Strony
163--174
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
  • Department of Mechanical Engineering, The University Of Sheffield, Sheffield S1 3jd, Uk
autor
  • Department of Mechanical Engineering, The University Of Sheffield, Sheffield S1 3jd, Uk
  • Institute For Frontier Materials, Deakin University, Victoria, 3216, Australia
Bibliografia
  • Al-Abbasi, F.M., Nemes, J.A. 2003, Micromechanical modeling of the effect of particle size difference in dual phase steels, International Journal of Solids and Structures, 40, 13-14, 3379-91.
  • Asgari, A., Hodgson, P.D., Rolfc, B.F. 2009, Modelling of Advanced High Strength Steels with the realistic microstructure-strength relationships, Computational Materials Science, 45, 4, 860-86.
  • Choi, K.S., Liu, W.N., Sun, X., Khaleel, M.A. 2009a, Influence of martensite mechanical properties on failure mode and ductility of dual-phase steels, Metallurgical and Materials Transactions A, 40A, 796-809.
  • Choi, K.S., Liu, W.N., Sun, X., Khaleel, M.A. 2009b, Microstructure-based constitutive modeling of TRIP steel: prediction of ductility and failure modes under different loading conditions, Acta Materialia, 57, 2592-604.
  • Choi, K.S., Soulami, A., Liu, W.N., Sun, X., Khaleel, M.A. 2010, Influence of various material design parameters on deformation behaviors of TRIP steels, Computational Materials Science, 50, 720-30.
  • Cong, Z.H., Jia, N., Sun, X., Ren, Y., Aimer, J., Wang, Y.D. 2009, Stress and strain partitioning of ferrite and martensite during deformation, Metallurgical and Materials Transactions A, 40A, 1383-7.
  • De Cosmo, M., Galantucci, L.M., Tricarico, L. 1999, Design of process parameters for dual phase steel production with strip rolling using the finite-element method, Journal of Materials Processing Technology, 92-93, 486-93.
  • Delannay, L., Lani, F., Jacques, P. 2005, Simulation of deep-drawing of TRIP-assisted multiphase steel based on a micro-macro modelling, in IDDRG2005.
  • Dietrich, C, Poech, M.H., Fischmeister, H.F., Schmauder, S. 1993, Stress and strain partitioning in a Ag-Ni fibre composite under transverse loading, finite element modelling and experimental study, Computational Materials Science, 1, 195-202.
  • Ghadbeigi, H., Pinna, C, Celotto, S., Yates, J.R. 2010, Local plastic strain evolution in a high strength dual-phase steel, Materials Science and Engineering A, 527, 5026-32.
  • Hulka, K. 2003, Modern multi-phase steels for the automotive industry, Materials Science Forum, 414-415, 101-10.
  • Jacques, P.J., Furnemont, Q., Lani, F., Pardocn, T., Delannay, F. 2007, Multiscalc mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing, Acta Materialia, 55,3681-93.
  • Konieczny, A.A. 2001, On the formability assessment of the automotive Dual Phase steels, in 2001 World Congress, Society of Automotive Engineers, 2001 -01 -3075, 1023-8.
  • Konieczny, A.A., Shi, M.F., Du, C. 2001, An experimental study of springback for Dual Phase steel and conventional High Strength Steel, in International Body Engineering Conference (IBEC), Detroit, Michigan, 2001-01-3106, 1063-7.
  • Kouznetsova, V. 2002, Computational homogenization for the multi-scale analysis of multi-phase materials, PhD thesis, Eindhoven University of Technology.
  • Lani, F., Furnemont, Q., Jacques, P., Delannay, F., Pardoen, T. 2003, Micromechanical modeling of plastic anisotropy and strain induced phase transformation in dual-clastoplastic phase materials, J. Phys. IV France, 105, 139-47.
  • Lani, F., Furnemont, Q., Van Rompaey, T., Delannay, F., Jacques, P., Pardoen, T. 2007, Multiscale mechanics of TRIP-assisted multiphase steels: II. Micromcchanical modelling, Acta Materialia, 55, 3695-705.
  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E. 1953, Equation and state calculations by fast computing machines, The Journal of Chemical Physics, 21, 2, 1087-92.
  • Ming Huang, C, Joanne, C.L., Patnaik, B.S.V., Jayaganthan, R. 2006, Monte Carlo simulation of grain growth in polycrystalline materials, Applied Surface Science, 252, 3997-4002.
  • Miodownik, M.A. 2002, A review of microstructural computer models used to simulate grain growth and reerystallisation in aluminium alloys, Journal of Light Metals, 2, 125-35.
  • Nikhare, C, Asgari, A., Weiss, M., Hodgson, P. 2010, Fracture of DP590 steel: a multiscalc modeling approach, Steel Research International, 81,9, 1450-3.
  • Nygards, M., Gudmundson, P. 2002, Micromcchanical modeling of ferritic/pearlitic steels, Materials Science and Engineering A, 325, 435-43. Rashid, M.S. 1981, Dual Phase steels, Ann. Rev. Mater. Sci., 1 1, 245-66.
  • Saleh, M.H., Priestner, R. 2001, Retained austcnite in dual-phase silicon steels and its effect on mechanical properties, Journal of Materials Processing Technology, 113, 1-3, 587-93.
  • Soulami, A., Choi, K.S., Liu, W.N., Sun, X., Khaleel, M.A., Ren, Y., Wang, Y.D. 2010, Predicting fracture toughness of TRIP 800 using phase properties characterized by In-Situ High Energy X-Ray Diffraction, Metallurgical and Materials Transactions A,41A, 1261-8.
  • Soulami, A., Choi, K.S., Shcn, Y.F., Liu, W.N., Khaleel, M.A. 2011, On deformation twinning in a 17.5% Mn-Twip steel: A physically based phenomenological model, Materials Science and Engineering A, 528, 1402-8.
  • Sun, X., Choi, K.S., Liu, W.N., Khaleel, M.A. 2009a, Predicting failure modes and ductility of dual phase steels using plastic strain localization, International Journal of Plasticity, 25, 1888-909.
  • Sun, X., Choi, K.S., Soulami, W.N., Liu, W.N., Khaleel, M.A. 2009b, On key factors influencing ductile fractures of dual phase (DP) steels, Materials Science and Engineering A, 526, 140-9.
  • Terada, K., Hori, M., Kyoya, T., Kikuchi, N. 2000, Simulation of the multi-scale convergence in computational homogenization approaches, International Journal of Solids and Structures, 37, 2285-311.
  • Van der Sluis, O., Schreurs, P.J.G., Brekelmans, W.A.M., Meijer, H.E.H. 2000, Overall behaviour of heterogeneous elastoviscoplastic materials: effect of microstructural modelling, Mechanics of Materials, 32, 449-62.
  • Wagoner, R.H. 2006, Advanced High Strength Steels: Fundamental Research Issues, Accessed online (June 2007) at http://www.a-sp.org/nsf/indcx.htm, in NSF Workshop, Arlington, VA, USA.
  • Zaefferer, S., Ohlert, J., Bleck, W. 2004, A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel, Acta Materialia, 52,2765-78.
  • Zheng, Y.G., Lu, C, Mai, Y.M., Gu, Y.X., Zhang, H.W., Chen, Z. 2006, Monte Carlo simulation of grain growth in two-phase nanocrystalline materials, Applied Physics Letters, 88, 144101-3.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-88863433-4e18-41e8-a145-89552c288adc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.