Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 39, No. 2 | 252--264
Tytuł artykułu

Synthetic alkaline-earth hydroxyapatites: Influence of their structural, textural, and morphological properties over Co2+ ion adsorption capacity

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work addresses the synthesis of nanocrystalline barium, strontium, and calcium hydroxyapatites (Ca-HAps) via the chemical precipitation method, followed by calcination. To give a coherent picture of the most important structural, textural, and morphological properties of these materials and to investigate the influence of these characteristics over Co2+ ion adsorption capacity from aqueous solutions, the powders prepared were systematically characterized by X-ray diffraction, N2-physisorption measurements, scanning electron microscopy (SEM), energy dispersive X-ray spectrometry, and Fourier Transformed Infrared spectroscopy (FTIR). The results clearly showed that the Ca-HAp obtained exhibits better nanocrystallinity, greater structural stability, high surface area, high total pore volume, and mesoporosity, compared with the other synthesized hydroxyapatites, and that these physicochemical properties share a direct correlation with favorable Co2+ ion adsorption capacity at room temperature and pressure. The results proved that the physicochemical features of resulting alkaline-earth hydroxyapatites, prepared via the chemical precipitation method, played a fundamental role during the adsorption of heavy metal (with high toxicity) from aqueous solutions.
Wydawca

Rocznik
Strony
252--264
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Instituto Nacional de Investigaciones Nucleares, Departamento de Química, A.P. 18-1027, Col. Escandón, Delegación Miguel Hidalgo, C.P. 11801, Ciudad de México, México, francisco.granados@inin.gob.mx
  • Instituto Nacional de Investigaciones Nucleares, Departamento de Química, A.P. 18-1027, Col. Escandón, Delegación Miguel Hidalgo, C.P. 11801, Ciudad de México, México
Bibliografia
  • [1] Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, et al. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotox EnvironSafe. 2018;148:702–2.
  • [2] Vilchis-Granados J, Granados-Correa F, Barrera-Díaz C. Surface fractal dimensions and textural properties of mesoporous alkaline-earth hydroxyapatites. Appl Surf Sci. 2013;279:97–2.
  • [3] Rhee S. Synthesis of hydroxyapatite via mechanochemical treatment. Biomaterials 2002;23:1147–2.
  • [4] Parhi P, Raman A, Ray AR. Hydrothermal synthesis of nanocrystalline powders of alkaline-earth hydroxyapatites, A10(PO4)6(OH)2 (A=Ca, Sr and Ba). J Mater Sci. 2002;41:1455–8.
  • [5] Ghosh SK, Datta S, Roy SK. Solution combustion synthesis of calcium hydroxyapatite nanoparticles. Trans Ind Ceram Soc. 2004;63:27–2.
  • [6] Wang J, Shaw LL. Synthesis of high purity hydroxyapatite nanopowders via sol-gel combustion process. J Mat Sci. 2009;20:1223–7.
  • [7] Pham TTT, Nguyen TP, Pham TN, Vu TP, Thai H, Dinh TMT. Impact of physical and chemical parameters on the hydroxyapatite nanopowder synthesized by chemical precipitation method. Adv Nat Sci: Nanosci Nanotechnol. 2013;4:035014.
  • [8] Byrappa K, Yoshimura M. Handbook of hydrothermal technology – a technology for crystal growth and materials processing. New York: William Andrew Publishing; 2001.
  • [9] Feng Y, Gong JL, Zeng GM, Niu QY, Zhang HY, Niu CG, et al. Adsorption of Cd(II) and Zn(II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chem Eng J. 2010;162:487–4.
  • [10] Mobasherpour I, Salahi E, Pazouki M. Removal of nickel (II) from aqueous solutions by nanocrystalline calcium hydroxyapatite. J Saudi Chem Soc. 2011;15:105–2.
  • [11] Granados-Correa F, Vilchis-Granados J, Jiménez-Reyes M, Quiroz-Granados LA. Adsorption behavior of La(III) and Eu (III) ions from aqueous solutions by hydroxyapatite: Kinetic, isotherm and thermodynamic studies. J Chem. 2013;1–9:ID. 751696.
  • [12] Gupta N, Kushwaha AK, Chattopadhyaya MC. Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution. J Taiwan Inst Chem Eng. 2013;43:125–1.
  • [13] Li H, Guo X, Ye X. Screening hydroxyapatite for cadmium and lead immobilization in aqueous solution and contaminated soil: the role of surface area. J Environ Sci. 2017;52:141–0.
  • [14] Ma B, Shin WS, Oh S, Park YJ, Choi SJ. Adsorptive removal of Co and Sr ions from aqueous solution by synthetic hydroxyapatite nanoparticles. Sep Sci Technol. 2010;45:453–2.
  • [15] Smiciklas I, Dimović S, Plécas I, Mitric M. Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Res. 2006;40:2267–4.
  • [16] Janusz W, Skwarek E. Effect of Co(II) ions adsorption in the hydroxyapatite/aqueous NaClO4 solution system on particles electrokinetics. Physicochem Probl Miner Process. 2018;54:31–9.
  • [17] Vahdat, Ghasemi B, Yousefpour M. Synthesis of hydroxyapatite and hydroxyapatite/Fe3O4 nanocomposite for removal of heavy metals. Environ Nanotechnol Monit Manag. 2019;12:100233.
  • [18] Hadioui M, Sharrock P, Mecherri MO, Brumas V, Fiallo M. Reaction of lead ions with hydroxylapatite granules. Chem Pap. 2008;62;516–1.
  • [19] Ghassabzadeh H, Mostaedi MT, Mohaddespour A, Maragheh MG, Ahmari SJ, Zaheri P. Characterizations of Co(II) and Pb(II) removal process from aqueous solutions using expanded perlite. Desalination 2010;261:73– 9.
  • [20] Ibrahim VW. Biosorption of heavy metal ions from aqueous solution by red macroalgae. J Hazard Mater. 2011;192:1827–5.
  • [21] Kanna S, Goetz-Neunhoeffer F, Neubauer J, Ferreira MF. Ionic substitutions in biphasic hydroxyapatites and β-tricalcium phosphate mixtures: structural analysis by Rietveld refinement. J Am Ceram Soc. 2008;91:1–2.
  • [22] Bouyer E, Gitzhofer F, Boulos MI. Morphological studyof hydroxyapatite nanocrystal suspension. J Mater Sci Mater Med. 2000;11:523–1.
  • [23] Telep G, Boltz DF. Ultraviolet spectrophotometric determination of cobalt with peroxide and bicarbonate. Anal Chem. 1952;24:945–7.
  • [24] Puigdomenech I. MEDUSA: Make equilibrium diagrams using sophisticated algorithms. 2004. http://www. inorg.kth.se/Research/Ignasi;/Index.html. Accessed 15 Jan 2004.
  • [25] Yang H, Masse S, Zhang H, Hélary C, Li L, Coradin T. Surface reactivity of hydroxyapatite nanocoatings deposited on iron oxide magnetic spheres toward toxic metals. J Colloid Interf Sci. 2014;417:1–8.
  • [26] Monteil RF, Fedoroff M. Sorption of inorganic species on apatites from aqueous solutions. In: encyclopedia of surface and colloid science. New York: Marcel Dekker; 2002.
  • [27] Sugiyama S, Moriga T, Goda M, Hayashi H, Moffat JB. Effects of fine structure changes of strontium hydroxyapatites on ion-exchange properties with divalent cations. J Chem Soc Faraday Trans. 1996;92:4305.
  • [28] Wells AF. Structural inorganic chemistry. 5th ed. Oxford: Clarendon Press; 1984.
  • [29] Moussa S, Lachheb J, Gruselle M, Maaten B, Kriis K, Kanger T, et al. Calcium, barium and strontium apatites: a new generation of catalysts in the Biginelli reaction. Tetrahedron 2017;73:6542–8.
  • [30] Liu C, Huang Y, Shen W, Cui J. Kinetics of hydroxyapatite precipitation at pH 10 to 11. Biomaterials 2001;22:301–6.
  • [31] Sugiyama S, Nishioka H, Moriga T, Hayashi H, Moffat JB. Ion-exchange properties of strontium hydroxyapatite under acidic conditions. Sep Sci Technol. 1998;33:1999–7.
  • [32] Suryanarayana C, Norton MG. X-ray diffraction. A practical approach. New York: Plenum Press; 1998.
  • [33] Wang B, Koike N, Iyoki K, Chaikittisilp W, Wang Y, Wakihara, Okubo T. Insights into the ion-exchange properties of Zn(II)-incorporated MOR zeolites for the capture of multivalent cations. Phys Chem Chem Phys. 2019;21:4015–1.
  • [34] Somani V, Kalita J. Synthesis and characterization of nanocrystalline barium strontium titanate powder via sol-gel processing. J Electrochem. 2007;18:57–5.
  • [35] Drot R, Lindecker C, Fourest B, Simoni E. Surface characterization of zirconium and thorium phosphate compounds. New J Chem. 1998;1:1105–9.
  • [36] Zhanglei N, Zhidong Ch,Wenju L, Changyan S, Jinghua Z, Yang I. Solvothermal synthesis and optical performance of one-dimensional strontium hydroxyapatite nanorod. Chin J Chem Eng. 2012;20:89–4.
  • [37] Raynaud S, Champion E, Bernache-Assollant D, Thomas P. Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterization and thermal stability powders. Biomaterials 2002;23:1065–2.
  • [38] Angelescu A, Ungureeanu D, Catangiu A. Electrodeposition of hydroxyapatite coatings in basic conditions. Rev Chim. 2011;62:702–6.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8881f367-f6f0-4ec7-8656-4e9f7407d473
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.