Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 52, nr 1 | 523--530
Tytuł artykułu

Orthogonal stability of the generalized quadratic functional equations in the sense of Rätz

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let (X, ⊥) be an orthogonality module in the sense of Rätz over a unital Banach algebra A and Y be a real Banach module over A. In this paper, we apply the alternative fixed point theorem for proving the Hyers-Ulam stability of the orthogonally generalized k-quadratic functional equation of the form af(kx+y) + af(kx-y) = f(ax+ay) + f(ax-ay) + (2k2-2)f(ax) for some |k|>1, for all a∈A1:= {u∈A|‖u‖ = 1} and for all x,y∈X with x⊥y, where f maps from X to Y.
Wydawca

Rocznik
Strony
523--530
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
  • Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University Rangsit Center, Pathum Thani 12120, Thailand, Laddawan_Aiemsomboon@hotmail.com
  • Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University Rangsit Center, Pathum Thani 12120, Thailand, wutiphol@mathstat.sci.tu.ac.th
Bibliografia
  • [1] Rätz J., On orthogonally additive mappings, Aequ. Math., 1985, 28, 35-49
  • [2] Ulam S. M., Problems in Modern Mathematics, John Wiley & Sons, New York, NY, USA, 1964
  • [3] Hyers D. H.,On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 1941, 27, 222-224
  • [4] Aoki T., On the stability of the linear transformation in normed spaces, J. Math. Soc. Japan, 1950, 2 ,64-66
  • [5] Bourgin D. G., Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 1950, 57, 223-237
  • [6] Forti G. L., An existence and stability theorem for a class of functional equations, Stochastica, 1980, 4 ,23-30
  • [7] Rassias T. M., On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 1978, 72, 297-300
  • [8] Gajda Z., On stability of additive mappings, Int. J. Math. Math. Sci., 1991, 14, 431-434
  • [9] Rassias T. M., Problem 16; 2.Report of the 27th International Symposium on Functional Equations, Aequ. Math., 1990, 39, 292-293
  • [10] Rassias T. M., On a modified Hyers-Ulam sequence, J. Math. Anal. Appl., 1991, 158, 106-113
  • [11] Ger R., Sikorska J., Stability of the orthogonal additivity, Bull. Pol. Acad. Sci., Math., 1995, 43, 143-151
  • [12] Skof F., Proprieta’ locali e approssimazione di operatori, Rend. Semin. Mat. Fis. Milano, 1983, 53, 113-129
  • [13] Vajzović F., Über das Funktional H mit der Eigenschaft: (x, y) = 0 ⇒ H(x+y) + H(x−y) = 2H(x) + 2H(y), Glas. Mat., 1967, 2, 73-81
  • [14] Towanlong W., Nakmahachalasint P., A quadratic functional equation and its generalized Hyers-Ulam Rassias stability, Thai J. Math. Special Issue (Annual Meeting in Mathematics), 2008, 2008, 85-91
  • [15] Diaz J., Margolis B., A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc.,1968, 74, 305-309
  • [16] Park C., Cho Y. J., Lee J. R., Orthogonal stability of functional equations with the fixed point alternative, Adv. Difference Equ., 2012, 2012:173
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8877a15a-8ffb-4c6a-9c44-fb33d994a869
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.