Warianty tytułu
Języki publikacji
Abstrakty
Because of special characteristics of vanadate compound, such as its sustainability, magneticity, high selectivity in reactions and catalytic character, this study aimed to preparation and analyzing novel ceramic iron vanadate (FeVO4) nanofibers. The ceramic nanofibers of iron vanadate were made by the combination of sol-gel and electrospinning methods. First, polyvinyl alcohol (PVA), as a matrix polymer, was mixed separately with ammonium metavanadate (NH4VO3) and iron (III) nitrate (Fe(NO3)3). As a result, the spinnable polymeric gel was obtained from the controlled mixture of these two precursors of ceramic material. Electrospinning of PVA/iron (III) nitrate/ammonium vanadate solution was done using an Electroris setup that enabled preparation of polymeric template nanofiber. Finally, iron vanadate nanofiber was obtained by calcination of polymer nanofiber at controlled temperature. The products were characterized with scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM) and Brunauer-Emmett-Teller (BET) surface area analysis.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
645--651
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
- Active Pharmaceutical Ingredients Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
autor
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University Tehran, Iran, behnazziyadi@yahoo.com
autor
- Chemistry Department, Tarbiat Modares University, Tehran, Iran
Bibliografia
- [1] LIM K., TECK CH., Prog. Polym. Sci., 70 (2017), 1.
- [2] TEO W.E., RAMAKRISHNA S., Nanotechnology, 17 (2006), 79.
- [3] PATIL J.V., MALI S.S., KAMBLE A.S., HONG CH.K., KIM J.H., PATIL P.S., Appl. Surf. Sci., 423 (2017), 641.
- [4] XUE J., XIE J., LIU W., XIA Y., Acc. Chem. Res., 50 (2017), 1976.
- [5] THENMOZHI S., DHARMARAJ N., KADIRVELU K., YONG KIM H., Mater. Sci. Eng. B-Adv., 217 (2017), 36.
- [6] DAI Y., LIU W., FORMO E., SUN Y., XIA Y., Polym. Advan. Technol., 22 (2011), 326.
- [7] ESFAHANI H., JOSE R., RAMAKRISHNA S., Materials, 10 (2017), 1238.
- [8] LI D., XIA Y., Adv. Mater., 16 (2004), 1151.
- [9] MASSAGLIA G., QUAGLIO M., Mat. Sci. Semicon. Proc., 73 (2018), 13.
- [10] LI L., PENG SH., LEE J.K.Y., JI D., SRINIVASAN M., RAMAKRISHNA S., Nano Energy, 39 (2017), 111.
- [11] CHANG Y., ZENG H.CH., Cryst. Growth Des., 4 (2004), 397.
- [12] MARBERGER A., FERRI D., ELSENER M., SAGAR A., KRÖCHER O., Appl. Catal. B-Environ., 218 (2017), 731.
- [13] SANJEEWA L.D., MCMILLEN C.D., WILLETT D., CHUMANOV G., KOLIS J.W., J. Solid State Chem., 236 (2016), 61.
- [14] KALAI S.R., GEDANKEN A., ANILKUMAR P., MANIKANDAN G., KARUNAKARAN C., J. Cluster Sci., 20 (2009), 2991.
- [15] PARHI P., UPRETI SH., RAMANAN A., Cryst. Growth Des., 10 (2010), 5078.
- [16] GOLMOJDEH H., ZANJANCH M.A., J. Electron. Mater., 43 (2014), 528.
- [17] PALACIO L.A., SILVA E.R., CATALAO R., SILVA J.M., HOYOS D.A., RIBEIRO F.R., RIBEIRO M.F., J. Hazard. Mater., 153 (2008), 628.
- [18] REDDY CH.V.S., YEO I.H., IL-MHO S., J. Phys.Chem. Solids, 69 (2008), 1261.
- [19] HUANG L., SHI L., ZHAO X., XU J., LI H., ZHANG J., ZHANG D., CrystEngComm., 16 (2014), 5128.
- [20] GHOLAMZADEH B.M., MOUSAVI S.H., RANGRAZ J.M., J. Mater. Sci-Mater. El., 28 (2017), 1480.
- [21] POIZOTE PH., LAURUELLE S., TOUBOUL M., TARASCON J.-M., C.R. Chim., 6 (2003), 125.
- [22] NITHYA V.D., SELVAN R.K., Mater. Res. Bull., 406 (2011), 24.
- [23] NITHYA V.D., KALAI R.S., SANJEEVIRAJA C., MOHAN R.D., ARUMUGAM S., Mater. Res. Bull., 46 (2011), 1654.
- [24] KANETI Y.V., LIU M., ZHANG X., BU Y., YU Y., Sensor. Actuat. B-Chem., 236 (2016), 173.
- [25] HEYDARI A., SHEYKHAN M., SADEGHI M., RADFAR I., Inorg. Nano-Met. Chem., 47 (2017), 248.
- [26] MA H., YANG X., TAO Z., LIANG J., CHEN J., Cryst Eng Comm., 13 (2011), 897.
- [27] LEE H.S., MO K.J., OH G.S., SOONIM S., Mater. Chem. Phys., 194 (2017), 313.
- [28] LUO L., FEI Y., CHEN K., LI D., QIA H., J. Alloy. Compd., 649 (2015), 1019.
- [29] LUTTA S.T., DONG H., ZAVALIJ P.Y., WHITTINGHAM M.S., Mater. Res. Bull., 40 (2005), 383.
- [30] WANG F., ZHANG H., LIU L., SHIN B., SHAN F.K., J. Alloy. Compd., 672 (2016), 229.
- [31] RENEKER D.H., CHUN I., Nanotechnology, 7 (1996), 216.
- [32] WONGSASULAK S., PATAPEEJUMRUSWONG M., WEISS J., SUPAPHOL P., YOOVIDHYA T., J. Food Eng., 98 (2010), 370.
- [33] COATES J., Interpretation of Infrared Spectra. A Practical Approach Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd., Chichester, 2000, p. 10815.
- [34] VUK S.A., OREL B., DRAGIC G., J. Solid State Electr., 5 (2001), 437.
- [35] WILLIAMSON J.K., SMALLMAN R.E., Philos. Mag., 1 (1956), 34.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-880789d0-8129-4396-9157-9a76a7859fbc