Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | nr 10 | 26--29
Tytuł artykułu

Alga złocista jako źródło katastrof ekologicznych

Warianty tytułu
Języki publikacji
PL
Abstrakty
Wydawca

Rocznik
Tom
Strony
26--29
Opis fizyczny
Bibliogr. 27 poz., il.
Twórcy
  • Politechnika Poznańska
  • Politechnika Poznańska
Bibliografia
  • 1. https://www.biol.uw.edu.pl/dr-hab-anna-karnkowska-o-prymnesium-parvum-w-odrze/ (dostęp: 25.09.2022).
  • 2. Lundholm N., Moestrup O.: The biogeography of harmful algae. W: Ecology of Harmful Algae, red.: Graneli E., Turner J.T. Springer. Berlin 2006, t. 189, s. 23-35.
  • 3. Southard G.M., Fries L.T., Barkoh A.: Prymnesium parvum: The Texas Experience. “Journal of the American Water Resources Association” 46/2010, s. 14-23.
  • 4. Roelke D.L. i in.: A chronicle of a killer alga in the west ecology, assessment, and management of Prymnesium parvum blooms. “Hydrobiologia” 764/2016, s. 29-50; https://doi.org/10.1007/s10750-015-2273-6.
  • 5. Hambright K.D. i in.: Temporal and spatial variability of an invasive toxigenic protist in a North American subtropical reservoir . “Harmful Algae”. 9/2010, s. 568-577.
  • 6. Bertin M.J. i in.: Identification of toxic fatty acid amides isolated from the harmful alga Prymnesium parvum carter . “Harmful Algae” 20/2012, s. 111-116.
  • 7. Vasas G. i in.: Occurrence of toxic Prymnesium parvum blooms with high protease activity is related to fish mortality in Hungarian ponds. “Harmful Algae” 17/2012, s. 102-110.
  • 8. Manning S.R., La Claire Ii J.W.: Isolation of polyketides from Prymnesium parvum (Haptophyta) and their detection by liquid chromatography/mass spectrometry metabolic fingerprint analysis. ”Analytical Biochemistry” 442/2013, s. 189-195.
  • 9. Zhang Y.F.: The formation, harm and control of 3 common single algae in northern culture ponds. “Jiangxi Aquat. Technol.” 4/2016, s. 39-40.
  • 10. He S.: Effect of Calcium Ion on the Competition among Four Freshwater Algae Species Under Different Nutrient Conditions. Xi'an, Chiny 2020.
  • 11. Zhang Q., Hu G.: Effect of nitrogen to phosphorus ratios on cell proliferation in marine micro algae. “Journal of Oceanology and Limnology” 29/2011, s. 739-745.
  • 12. Chiranjeevi P., Mohan S.V.: Critical parametric influence on microalgae cultivation towards maximizing biomass growth with simultaneous liqid productivity. “Renewable Energy” 98/2016, s. 64-71.
  • 13. Wu Z. i in.: The Effects of Light, Temperature, and Nutrition on Growth and Pigment Accumulation of Three Dunaliella salina Strains Isolated from Saline Soil. “Jundishapur Journal of Microbiology” 9/2016, e26732.
  • 14. Fournier E. i in.: Selenate bioaccumulation and toxicity in Chlamydomonas reinhardtii: Influence of ambient sulphate ion concentration. ,”Aquatic Toxicology” 97/2010, s. 51-57.
  • 15. Ma J.-M.i in.: Acute toxicity and effects of l-alky-l-3-methylimidazolium bromide ionic liquids on green algae . “Ecotoxicology Environmental Safety” 73/2010, s. 1465-1469.
  • 16. Dao L.H.T., Beardall J.: Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae .”Chemosphere” 147/2016, s. 420-429.
  • 17. Cheng J.: The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris. ”SpringerPlus” 5/2016, s. 1290.
  • 18. Ren H.-Y. i in.: Enhanced lipid accumulation of green microalga Scenedesmus sp. By metal ions and EDTA addition. “Bioresource Technology” 169/2014, s. 763-767.
  • 19. Lohman E.J. i in.: Optimized inorganic carbon regime for enhanced growth and lipid accumulation in Chlorella vulgaris .”Biotechnology for Biofuels” 8/2015, s. 82.
  • 20. Islami H.R., Assareh R.: Enhancement effects of ferric ion concentrations on growth and lipid characteristics of freshwater microalga Chlorococcum oleofaciens KF584224.1 for biodiesel production. “Renewable Energy” 149/2020, s. 264-272.
  • 21. Roelke D.I. i in.: Anticipated human population and climate change effects on algal blooms of a toxic haptophyte in the south-central USA. “Canadian Journal of Fisheries and Aquatic Sciences” 69/2012, s. 1389-1404.
  • 22. Wagstaff B.A. i in.: Insights into toxic Prymnesium parvum blooms: the role of sugars and algal viruses. “Biochemical Society Transactions” kwiecień 17/2018, 46(2), s. 413-421. doi: 10.1042/BST20170393.
  • 23. Shirota A.: Red tide problem and countermeasures. “International Journal of Fisheries and Aquaculture” 1/1989, s. 195-223.
  • 24. Rodgers J.H. Jr, Johnson B.M., Bishop W.M.: Comparison of three algaecides for controlling the density of Prymnesium parvum. “Journal of the American Water Resources Association” 46/2010, s. 153-160. 10.1111/j.1752-1688.2009.00399.x
  • 25. Environment Agency Quarter of a million fish rescued in Norfolk Broads; https://www.gov.uk/government/news/quarter-of-a-million-fish-rescued-in-norfolk-broads (dostęp: 25.09.2022).
  • 26. Matthijs H.C. i in.: Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. “Water Resources” 46/2012, s. 1460-1472.10.1016/j.watres.2011.11.016.
  • 27. Burson A. i in.: Termination of a toxic Alexandrium bloom with hydrogen peroxide. “Harmful Algae” 31/2014, s. 125-135.10.1016/j.hal.2013.10.017.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-87e5c973-4ba4-47a9-80a0-7ae3b349c35b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.