Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 23, no. 3 | 267--282
Tytuł artykułu

Evaluation of the resistance of modified bitumen to low-temperature cracking based on the colloidal index

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Ocena odporności asfaltu modyfikowanego na spękania niskotemperaturowe na podstawie wskaźnika koloidalnego
Języki publikacji
EN PL
Abstrakty
EN
One of the causes of damage to bitumen pavements in regions of the world with sub-zero temperatures is low-temperature cracking. To counter this phenomenon, asphalt mixtures (MMA) are being designed to resist the occurrence of such cracks. The choice of bitumen binder is crucial to the service life of a road pavement and its resistance to cracking. In this paper, the authors evaluated the influence of binder type on the low-temperature resistance of asphalt mixtures. Several modified bitumens, both medium and high-modified (HiMA), were used in the study. The basic parameters of the bitumens (softening point, penetration) as well as the group composition (SARA) were determined. The colloidal index was used as a criterion for the correct choice of binder. Low-temperature cracking resistance tests were also carried out on asphalt mixtures. The study was conducted using the TSRST method. The results showed that the use of modified bitumen improves the performance of MMA at low temperatures. It was also noted that the assessment of low-temperature cracking resistance using the colloidal index is not effective for modified bitumens; a different test methodology needs to be developed for their assessment.
PL
Jedną z przyczyn uszkodzeń nawierzchni asfaltowych w regionach świata, gdzie występują ujemne temperatury, są spękania niskotemperaturowe. Aby przeciwdziałać temu zjawisku, projektowane są mieszanki mineralno-asfaltowe (MMA), które mają być odporne na występowanie takich pęknięć. Dobór lepiszcza asfaltowego ma kluczowe znaczenie dla żywotności nawierzchni drogowej i jej odporności na powstawanie spękań. Autorzy w artykule dokonali oceny wpływu rodzaju lepiszcza na odporność niskotemperaturową mieszanek mineralno-asfaltowych. W badaniu wykorzystano kilka asfaltów modyfikowanych, zarówno średnio-, jak i wysokomodyfikowanych (HiMA). Określono podstawowe parametry asfaltów (temperatura mięknienia, penetracja) oraz oznaczono skład grupowy (SARA). Jako kryterium prawidłowego doboru lepiszcza zastosowano wskaźnik koloidalny. Przeprowadzono również testy odporności na pękanie w niskiej temperaturze na mieszankach mineralno-asfaltowych. Badanie przeprowadzono za pomocą metody TSRST. Wyniki pokazały, że zastosowanie asfaltu modyfikowanego poprawia parametry MMA w niskich temperaturach. Zauważono również, że ocena odporności na pękanie w niskiej temperaturze za pomocą wskaźnika koloidalnego nie jest skuteczna w przypadku asfaltów modyfikowanych; do ich oceny konieczne jest opracowanie innej metodyki badawczej.
Wydawca

Rocznik
Strony
267--282
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
  • Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Budownictwa i Inżynierii Środowiska, al. Piastów 17, 70-310 Szczecin, bartosz.budzinski@zut.edu.pl
Bibliografia
  • 1. Judycki J.: Application of the new viscoelastic method of thermal stress calculation to the analysis of low-temperature cracking of ashpalt layers. Roads and Bridges – Drogi i Mosty, 19, 1, 2020, 27-49, DOI: 10.7409/rabdim.020.002 DOI: https://doi.org/10.7409/rabdim.020.002
  • 2. Vinson T.S., Janoo V.C., Haas R.C.G.: Low temperature and thermal fatigue cracking. Summary report SR-OSU-A-003A-89-1 of Strategic Highway Research Program. National Research Council, Washington, D.C., 1989
  • 3. Behnia B., Buttlar W., Reis H.: Evaluation of low-temperature cracking performance of asphalt pavements using acoustic emission: A review. Applied Sciences, 8, 2, 2018, ID article: 306, DOI: 10.3390/app8020306 DOI: https://doi.org/10.3390/app8020306
  • 4. Gajewski M., Bańkowski W., Gajewska B.: Determination of Thermal Stresses in Asphalt Layers as a Problem of Thermo-Elasticity and Unsteady Heat Flow. In: Di Benedetto H., Baaj H., Chailleux E., Tebaldi G., Sauzéat C., Mangiafico S. (Eds.): Proceedings of the RILEM International Symposium on Bituminous Materials. Springer International Publishing, Cham, RILEM Bookseries, 27, 2022, 545-551 DOI: https://doi.org/10.1007/978-3-030-46455-4_69
  • 5. Lytton R.L.: Design of asphalt pavements for thermal fatigue cracking. The Institute: College Station, Tex, 1983
  • 6. Yee P., Aida B., Hesp S., Marks P., Tam K.: Analysis of premature low-temperature cracking in three Ontario, Canada, pavements. Transportation Research Record, 1962, 1, 2006, 44-51, DOI: 10.3141/1962-06 DOI: https://doi.org/10.1177/0361198106196200106
  • 7. Zaumanis M., Valters A.: Comparison of two low-temperature cracking tests for use in performance-based asphalt mixture design. International Journal of Pavement Engineering, 21, 12, 2020, 1461-1469, DOI: 10.1080/10298436.2018.1549323 DOI: https://doi.org/10.1080/10298436.2018.1549323
  • 8. Judycki J., Jaczewski M., Ryś D., Pszczoła M., Jaskuła P., Glinicki A.: Field Investigation of low-temperature cracking and stiffness moduli on selected roads with conventional and high modulus asphalt concrete. IOP Conference Series: Materials Science and Engineering, 236, 2017, ID article: 012002, DOI: 10.1088/1757-899X/236/1/012002 DOI: https://doi.org/10.1088/1757-899X/236/1/012002
  • 9. Gao H., Xu B.: Research on climatic influencing factors of low temperature cracking index of asphalt pavement in cold area. IOP Conference Series: Earth and Environmental Science, 651, 4, 2021, ID article: 042032, DOI: 10.1088/1755-1315/651/4/042032 DOI: https://doi.org/10.1088/1755-1315/651/4/042032
  • 10. Bouldin M.G., Dongre R., Row G.M., Sharrock M.J., Anderson D.A.: Predicting thermal cracking of pavements from binder properties: Theoretical basis and field validation. Proceedings of the Association of Asphalt Paving Technologists, 69, 2000, 455-496
  • 11. Li X.J., Marasteanu M.O.: Using semi circular bending test to evaluate low temperature fracture resistance for asphalt concrete. Experimental Mechanics, 50, 7, 2010, 867-876, DOI: 10.1007/s11340-009-9303-0 DOI: https://doi.org/10.1007/s11340-009-9303-0
  • 12. Epps A.: Design and analysis system for thermal cracking in asphalt concrete. Journal of Transportation Engineering, 126, 4, 2000, 300-307,DOI: 10.1061/(ASCE)0733-947X(2000)126:4(300) DOI: https://doi.org/10.1061/(ASCE)0733-947X(2000)126:4(300)
  • 13. Shahin M.Y., McCullough B.F.: Prediction of low temperature and thermal-fatigue cracking in flexible pavements. Research Report No. 123-14, The Texas Highway Department and Texas Transportation Institute, 1972
  • 14. Jackson N.M., Vinson T.S.: Analysis of thermal fatigue distress of asphalt concrete pavements. Transportation Research Record, 1545, 1, 1996, 43-49, DOI: 10.1177/0361198196154500106 DOI: https://doi.org/10.1177/0361198196154500106
  • 15. Raffaniello A., Bauer, M., Safiuddin Md., El-Hakim M.: Traffic and climate impacts on rutting and thermal cracking in flexible and composite pavements. Infrastructures, 7, 8, 2022, ID article: 100, DOI: 10.3390/infrastructures7080100 DOI: https://doi.org/10.3390/infrastructures7080100
  • 16. Marasteanu M.O., Li X., Clyne T.R., Voller V., Timm D.H., Newcomb D.: Low temperature cracking of asphalt concrete pavement. Strategic Highway Research Program SHRP-A-400, Final Report, Minnesota Department of Transportation, 2004
  • 17. Rahbar-Rastegar R., Dave E.V., Daniel J.S.: Fatigue and thermal cracking analysis of asphalt mixtures using continuum-damage and cohesive-zone models. Journal of Transportation Engineering, Part B: Pavements, 144, 4, 2018, ID article: 04018040, DOI: 10.1061/JPEODX.0000066 DOI: https://doi.org/10.1061/JPEODX.0000066
  • 18. Anderson R., King G., Hanson, D., Blankenship P.: Evaluation of the relationship between asphalt binder properties and non-load related cracking. Journal of the Association of Asphalt Paving Technologists, 80, 2011, 615-664
  • 19. Szwed A., Kamińska I.: Mitigation of low-temperature cracking in asphalt pavement by selection of material stiffness. Procedia Engineering, 111, 2015, 748-755, DOI: 10.1016/j.proeng.2015.07.141 DOI: https://doi.org/10.1016/j.proeng.2015.07.141
  • 20. Pirmohammad S., Ayatollahi M.R.: Asphalt concrete resistance against fracture at low temperatures under different modes of loading. Cold Regions Science and Technology, 110, 2015, 149-159, DOI: 10.1016/j.coldregions.2014.11.001 DOI: https://doi.org/10.1016/j.coldregions.2014.11.001
  • 21. Xu Y., Zheng C., Feng Y., Guo X.: Low-temperature cohesive and adhesive strength testing of contact surface between bitumen and mineral aggregates by image analysis. Construction and Building Materials, 183, 2018, 95-101, DOI: 10.1016/j.conbuildmat.2018.06.169 DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.169
  • 22. Zhang W.: Evaluation of field transverse cracking of asphalt pavements. Washington State University, 2015, https://rex.libraries.wsu.edu/esploro/outputs/doctoral/Evaluation-of-Field-Transverse-Cracking-of/99900581837801842 (available online: 10 October 2022)
  • 23. Jung D., Vinson T.S.: Thermal Stress restrained specimen test to evaluate low-temperature cracking of asphalt-aggregate mixtures. Transportation Research Record, 1417, 1993, 12-20
  • 24. Büchner J., Wistuba M.: Analysis of low temperature relaxation properties of asphalt binder and asphalt mastic using a dynamic shear rheometer. Proceedings of the Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields, 2, CRC Press, London, 2022, 508-516 DOI: https://doi.org/10.1201/9781003222897-47
  • 25. Isacsson U., Zeng H.: Cracking of asphalt at low temperature as related to bitumen rheology. Journal of Materials Science, 33, 8, 1998, 2165-2170, DOI: 10.1023/A:1004383506240 DOI: https://doi.org/10.1023/A:1004383506240
  • 26. Pszczoła M., Judycki J.: Evaluation of thermal stresses in asphalt layers incomparison with TSRST test results. Proccedings of The 7th RILEM International Conference on Cracking in Pavements, RILEM Bookseries, 4, 2012, 41-49, DOI: 10.1007/978-94-007-4566-7_5 DOI: https://doi.org/10.1007/978-94-007-4566-7_5
  • 27. Jaczewski M., Dolżycki B., Alenowicz J., Jaskuła P.: Impact of reclaimed asphalt pavement (RAP) on low-temperature properties of asphalt concrete. Roads and Bridges – Drogi i Mosty, 18, 4, 2019, 303-315, DOI: 10.7409/rabdim.019.020 DOI: https://doi.org/10.7409/rabdim.019.020
  • 28. Judycki J.: Twardnienie fizyczne asfaltów i mieszanek mineralno-asfaltowych oraz jego wpływ na spękania niskotemperaturowe. Drogownictwo, 73, 12, 2013, 368-373
  • 29. Soenen H., Ekblad J., Lu X., Redelius P.: Isothermal hardening in bitumen and in asphalt mix. Proceedings of The 3rd Eurasphalt and Eurobitume Congress Held, Vienna, 2004, 2, 2004, 1364-1375
  • 30. Isacsson U., Zeng H.: Relationships between bitumen chemistry and low temperature behaviour of asphalt. Construction and Building Materials, 11, 2, 1997, 83-91, DOI: 10.1016/S0950-0618(97)00008-1 DOI: https://doi.org/10.1016/S0950-0618(97)00008-1
  • 31. Budziński B., Mieczkowski P.: Use of tensile creep test (TCT) for evaluation of low temperature performance of bituminous mixtures used for bridge pavement. Archives of Civil Engineering, 68, 2, 2022, 679-696, DOI: 10.24425/ACE.2022.140666
  • 32. Riccardi C., Wang D., Wistuba M.P., Walther A.: Effects of polyacrylonitrile fibres and high content of RAP on mechanical properties of asphalt mixtures in binder and base layers. Road Materials and Pavement Design, 24, 9, 2023, 2133–2155, DOI: 10.1080/14680629.2022.2117072 DOI: https://doi.org/10.1080/14680629.2022.2117072
  • 33. Teltayev B.B., Rossi C.O., Izmailova G.G., Amirbayev E.D., Elshibayev A.O.: Evaluating the effect of asphalt binder modification on the low-temperature cracking resistance of hot mix asphalt. Case Studies in Construction Materials, 11, 2019, ID article: e00238, DOI: 10.1016/j.cscm.2019.e00238 DOI: https://doi.org/10.1016/j.cscm.2019.e00238
  • 34. Tan Y., Zhang L., Xu H.: Evaluation of low-temperature performance of asphalt paving mixtures. Cold Regions Science and Technology, 70, 2012, 107-112, DOI: 10.1016/j.coldregions.2011.08.006 DOI: https://doi.org/10.1016/j.coldregions.2011.08.006
  • 35. Li G.Q., Li Y.Q., Metcalf J.B., Pang S.S.: Elastic modulus prediction of asphalt concrete. Journal of Materials in Civil Engineering, 11, 3, 1999, 236-241, DOI: 10.1061/(ASCE)0899-1561(1999)11:3(236) DOI: https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(236)
  • 36. Vamegh M., Ameri M., Chavoshian Naeni S.F.: Performance evaluation of fatigue resistance of asphalt mixtures modified by SBR/PP polymer blends and SBS. Construction and Building Materials, 209, 2019, 202-214, DOI: 10.1016/j.conbuildmat.2019.03.111 DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.111
  • 37. Khodaii A., Mehrara A.: Evaluation of permanent deformation of unmodified and SBS modified asphalt mixtures using dynamic creep test. Construction and Building Materials, 23, 7, 2009, 2586-2592, DOI: 10.1016/j.conbuildmat.2009.02.015 DOI: https://doi.org/10.1016/j.conbuildmat.2009.02.015
  • 38. Zhu J., Birgisson B., Kringos N.: Polymer modification of bitumen: advances and challenges. European Polymer Journal, 54, 2014, 18-38, DOI: 10.1016/j.eurpolymj.2014.02.005
  • 39. Isacsson U., Zeng H.: Low-temperature cracking of polymer-modified asphalt. Materials and Structures, 31, 1998, 58-63, DOI: 10.1007/BF02486415 DOI: https://doi.org/10.1007/BF02486415
  • 40. Roy S.D., Hesp S.A.M.: Low-temperature binder specification development: Thermal Stress restrained specimen testing of asphalt binders and mixtures. Journal of the Transportation Research Board, 1766, 1, 2001, 7-14, DOI: 10.3141/1766-02 DOI: https://doi.org/10.3141/1766-02
  • 41. Błażejowski K., Wójcik-Wiśniewska M.: Wytrzymałość zmęczeniowa i odporność na pękanie mieszanek mineralno-asfaltowych z różnymi asfaltami. IV Śląskie Forum Drogownictwa, Chorzów, 2016
  • 42. Tabor Z.: Przykłady zastosowania asfaltów wysokomodyfikowanych podczas remontów dróg wojewódzkich. IV Śląskie Forum Drogownictwa, Chorzów, 2016
  • 43. Du Z., Jiang C., Yuan J., Xiao F., Wang J.: Low temperature performance characteristics of polyethylene modified asphalts – a review. Construction and Building Materials, 264, 2020, ID article: 120704, DOI: 10.1016/j.conbuildmat.2020.120704 DOI: https://doi.org/10.1016/j.conbuildmat.2020.120704
  • 44. Rys D., Jaczewski M., Pszczoła M., Jaskuła P., Bańkowski W.: Effect of bitumen characteristics obtained according to EN and Superpave specifications on asphalt mixture performance in low-temperature laboratory tests. Construction and Building Materials, 231, 2020, ID article: 117156, DOI: 10.1016/j.conbuildmat.2019.117156 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117156
  • 45. Becker Y., Méndez M., Rodríguez Y.: Polymer modified asphalt. Vision Tecnologica, 9, 2000, 39-50, https://api.semanticscholar.org/CorpusID:51775580 (available on 16.09.2024)
  • 46. Pszczoła M., Szydłowski C., Jaczewski M.: Influence of cooling rate and additives on low-temperature properties of asphalt mixtures in the TSRST. Construction and Building Materials, 204, 2019, 399-409, DOI: 10.1016/j.conbuildmat.2019.01.148 DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.148
  • 47. Judycki J.; Pszczoła M.; Jaskula P.: Wpływ rodzaju asfaltu na odporność cienkich warstw ścieralnych na spękania niskotemperaturowe. II Międzynarodowa Konferencja Naukowo-Techniczna „Nowoczesne Technologie w Budownictwie Drogowym”; Poznań, 2001; 132-141
  • 48. Lu X., Isacsson U.: Effect of binder rheology on the low-temperature cracking of asphalt mixtures. Road Materials and Pavement Design, 2, 1, 2001, 29-47, DOI: 10.1080/14680629.2001.9689893 DOI: https://doi.org/10.1080/14680629.2001.9689893
  • 49. Lu X.; Isacsson U., Ekblad J.: Influence of polymer modification on low temperature behaviour of bituminous binders and mixtures. Materials and Structures, 36, 2003, 652-656, DOI: 10.1007/BF02479497 DOI: https://doi.org/10.1007/BF02479497
  • 50. Aliha M.R.M., Fazaeli H., Aghajani S., Moghadas Nejad F.: Effect of temperature and air void on mixed mode fracture toughness of modified asphalt mixtures. Construction and Building Materials, 95, 2015, 545-555, DOI: 10.1016/j.conbuildmat.2015.07.165 DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.165
  • 51. Budziński B., Ratajczak M., Majer S., Wilmański A.: Influence of bitumen grade and air voids on low-temperature cracking of asphalt. Case Studies in Construction Materials, 19, 2023, ID article: e02255, DOI: 10.1016/j.cscm.2023.e02255 DOI: https://doi.org/10.1016/j.cscm.2023.e02255
  • 52. WT-2 Część I: Mieszanki Mineralno-Asfaltowe, Wymagania Techniczne. Generalna Dyrekcja Dróg Krajowych i Autostrad, Warszawa, 2014
  • 53. Ranny M.: Thin-layer chromatography with flame ionization detection. D. Reidel Publishing Company, Dordrecht, Holland, 2013
  • 54. Hesp S., Terlouw T., Vonk W.: Low Temperature performance of SBS-modified asphalt mixes. The Conference of Association of Asphalt Paving Technologists Proccedings, Reno, NV, United States, 69, 2000, 540-573
  • 55. Liu H., Chen Z., Wang Y., Zhang Z., Hao P.: Effect of poly phosphoric acid (PPA) on creep response of base and polymer modified asphalt binders/mixtures at intermediate-low temperature. Construction and Building Materials, 159, 2018, 329-337, DOI: 10.1016/j.conbuildmat.2017.10.087 DOI: https://doi.org/10.1016/j.conbuildmat.2017.10.087
  • 56. Lin P., Huang W., Li Y., Tang N., Xiao F.: Investigation of influence factors on low temperature properties of SBS modified asphalt. Construction and Building Materials, 154, 2017, 609-622, DOI: 10.1016/j.conbuildmat.2017.06.118 DOI: https://doi.org/10.1016/j.conbuildmat.2017.06.118
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-87df3fe4-25ff-4c6c-af57-b1ee3f1db0f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.