Czasopismo
2021
|
R. 97, nr 2
|
169--175
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Review of current research trends in vacuum switching technology
Języki publikacji
Abstrakty
Niniejszy artykuł zawiera przegląd aktualnych badań z zakresu łącznikowej techniki próżniowej opublikowanych w ostatnich latach w wiodących światowych czasopismach technologiczno-badawczych. Przedstawiony w niniejszej pracy aktualny stan badań ma umożliwić wytyczenie programu badań mogącego wspomóc rozwój tej technologii poprzez zwiększenie wiedzy o zjawiskach podstawowych istotnych dla eksploatacji i dalszego rozwoju wyłączników próżniowych.
Present publication contains review of current research in switching vacuum technology published in leading technological journals in recent years. Aim of the presented state of the art in vacuum switching technology is determining course of further research in vacuum switching technology, especially in range of fundamental research crucial for further circuit breaker development.
Czasopismo
Rocznik
Tom
Strony
169--175
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
- Politechnika Warszawska, Wydział Elektryczny, Instytut Elektroenergetyki, Plac Politechniki 1, 00-661 Warszawa, szymon.stoczko.dokt@pw.edu.pl
autor
- Politechnika Warszawska, Wydział Elektryczny, Instytut Elektroenergetyki, Plac Politechniki 1, 00-661 Warszawa, marcin.szewczyk@ien.pw.edu.pl
Bibliografia
- [1] Yao X. et al., Development and Type Test of a Single-Break 126-kV/40-kA–2500-A Vacuum Circuit Breaker, IEEE Trans. Power Deliv., vol. 31, no. 1, 2016.
- [2] CIGRE, Paper 589: The Impact of the Application of Vacuum Switchgear at Transmission Voltages, 2014.
- [3] Lechman M., and Mański P., Doświadczenia z uruchomienia i eksploatacji wyłącznika próżniowego na napięcie 110 kv, Urządzenia dla Energ., no. 2, pp. 49–55, 2018.
- [4] Li S., Geng Y., Liu Z., and J. Wang, A breakdown mechanism transition with increasing vacuum gaps, IEEE Trans. Dielectr. Electr. Insul., vol. 24, no. 6, pp. 3340–3346, 2017, doi: 10.1109/TDEI.2017.006482.
- [5] Chmielewski T., Oramus P., Szewczyk M., Kuczek T., and Piasecki W., Circuit breaker models for simulations of shortcircuit current breaking and slow-front overvoltages in HV systems, Electr. Power Syst. Res., vol. 143, pp. 174–181, 2017.
- [6] Szewczyk M., Kuczek T., Oramus P., Piasecki W., Modeling of repetitive ignitions in switching devices: case studies on Vacuum Circuit Breaker and GIS disconnector, in Analysis and Simulation of Electrical and Computer Systems, 2015.
- [7] Ejiri H. et al., Late Breakdowns Caused by Microparticles after Vacuum Arc Interruption, IEEE Trans. Plasma Sci., vol. 47, no. 8, pp. 3392–3399, 2019, doi: 10.1109/TPS.2019.2917379.
- [8] Szewczyk M., Stoczko S., Chmielak W., and Zagrajek A., Comparative Study of Synthetic Test Circuits for Testing of MV and HV AC Circuit Breakers According to IEC Std. 62271, in Conference on Progress in Applied Electrical Engineering (PAEE 2019), 2019.
- [9] Logachev A. A., Poluyanova I. N., Zabello K. K., Barinov Y. A., and Shkol’nik S. M., Cathode Surface State and Cathode Temperature Distribution after Current Zero of Different AMFContacts, IEEE Trans. Plasma Sci., vol. 47, no. 8, pp. 3516– 3524, 2019, doi: 10.1109/TPS.2019.2923326.
- [10] Zhang Z. et al., Anode Spot Threshold Current of Four Pure Metals Subjected to Uniform Axial Magnetic Field in High Current Vacuum Arcs, IEEE Trans. Plasma Sci., vol. 45, no. 8, pp. 2135–2143, 2017, doi: 10.1109/TPS.2017.2705171.
- [11] Tezenas du Montcel A., Chapelle P., Creusot C., Jardy A., Numerical Study of the Current Constriction in a Vacuum Arc at Large Contact Gap, IEEE Trans. Plasma Sci., vol 47, no. 5, 2019, doi: 10.1109/TPS.2019.
- [12] Li W., Shi Z., Wang C., Shi F., Jia S., and Wang L., The Motion Characteristics of a Single Cathode Spot in Removing Oxide Layer on Metal Surface by Vacuum Arc, IEEE Trans. Plasma Sci., vol. 45, no. 1, pp. 106–112, 2017, doi: 10.1109/TPS.2016.2636189.
- [13] Cuhna M. D., Kaufmann H. T. C., Benilov M. S., Hartmann W., Wenzel N., Detailed Numerical Simulation of Cathode Spots in Vacuum Arcs – I, IEEE Trans. Plasma Sci., vol 45, no. 8, 2017, doi: 10.1109/TPS.2017.2697005.
- [14] Schwoebel P. R. and Brodie I., Surface-science aspects of vacuum microelectronics, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 13, 1995.
- [15] Smeets R. P. P., Kuivenhoven S., Chakraborty S., and Sandolache G., Field electron emission current in vacuum PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 97 NR 2/2021 175 interrupters after large inrush current, Proc. - Int. Symp. Discharges Electr. Insul. Vacuum, ISDEIV, pp. 157–160, 2012, doi: 10.1109/DEIV.2012.6412476.
- [16] Zadeh M. K., Hinrichsen V., Smeets R., and Lawall A., Field emission currents in vacuum breakers after capacitive switching, IEEE Trans. Dielectr. Electr. Insul., vol. 18, no. 3, pp. 910–917, 2011, doi: 10.1109/TDEI.2011.5931080.
- [17] Yu Y., Wang J., Yang H., Geng Y., and Liu Z., Asymmetrical AC field emission current characteristics of vacuum interrupters subjected to inrush current, IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 1, pp. 49–57, 2016, doi: 10.1109/TDEI.2015.005258.
- [18] Liu S. et al., Modelling, Experimental Validation and Application of VARC HVDC Circuit Breakers, IEEE Trans. Power Deliv., vol. 8977, no. c, pp. 1–1, 2019, doi: 10.1109/tpwrd.2019.2947544.
- [19] Renz R., Gentsch D., Fink H., Slade P. G., and Schlug M., Vacuum Interrupters - sealed for life, in 19 th International Conference on Electricity Distribution, 2007.
- [20] Nakano Y., Kozako M., Hikita M., Tanaka T., and Kobayashi M., Estimation method of degraded vacuum in vacuum interrupter based on partial discharge measurement, IEEE Trans. Dielectr. Electr. Insul., vol. 26, no. 5, pp. 1520–1526, 2019, doi: 10.1109/TDEI.2019.008142.
- [21] Yang Q., Ruan J., Zhuang Z., and Huang D., Chaotic Analysis and Feature Extraction of Vibration Signals from Power Circuit Breakers, IEEE Trans. Power Deliv., vol. 8977, no. c, 2019, doi: 10.1109/TPWRD.2019.2934123.
- [22] Tang J., Lu S., Xie J., and Cheng Z., Contact Force Monitoring and Its Application in Vacuum Circuit Breakers, IEEE Trans. Power Deliv., vol. 32, no. 5, pp. 2154–2161, 2017, doi: 10.1109/TPWRD.2015.2423686.
- [23] Abdulahovic T., Thiringer T., Reza M., and Breder H., Vacuum Circuit-Breaker Parameter Calculation and Modelling for Power System Transient Studies, IEEE Trans. Power Deliv., vol. 32, no. 3, pp. 1165–1172, 2017, doi: 10.1109/TPWRD.2014.2357993.
- [24] Piasecki W., Kuczek T., Florkowski M., Transformer Switching With Vacuum Circuit Breaker: Case Study of PV Inverter LC Filters Impact on Transient Overvoltages, IEEE Trans. Power Deliv., vol. 31, no. 1, 2016.
- [25] Boxman R. L., Goldsmith S., Greenwood A., Twenty-Five Years of Progress in Vacuum Arc Research and Utilization, IEEE Trans. Plasma Sci., vol 25, no. 6, 1997.
- [26] Chmielak W., Przegląd metod diagnozowania stanu proóżni wyłaczników próżniowych, Przeglad Elektrotechniczny R. 90, nr 2, 2014.
- [27] Slade P. G., Hammer, C., Growth of Vacuum Interrupter Application in Distribution Switchgear, Trends in Distribution Switchgear 10-12.11.1998, no 459, 1998.
- [28] Siemens, Ulotka: 3AV1 blue circuit breakers.
- [29] Falkingham L. T., Cheng K. W., Molan W. J., The design of the 245 kV, Vacuum Circuit Breaker, XXVIIth Int. Symp. On Discharges and Electrical Insulation in Vacuum, Suzhou, 2016.
- [30] Liu Z., Wang. J., Xiu S., Wang Z., Yuan S., Zhou H., Yang R., Development of High-Voltage Vacuum Circuit Breakers in China, IEEE Trans. Plasma Sci., vol 35, no. 4, 2007, doi: 10.1109/TPS.2007.896929.
- [31] Homma M., Sakaki M., Kaneko E., Yanabu S., History of Vacuum Circuit Breakers and Recent Developments in Japan, , IEEE Trans. Power Deliv., vol. 13, no. 1, 2006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-87c7b303-bde2-4756-8730-183dd8f11147