Czasopismo
2022
|
Vol. 51, No. 4
|
325--336
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In marine environments where biofouling occurs and has an impact on the maritime economy and environment, compounds that inhibit the attachment, growth and survival of microorganisms in a biofilm complex as well as settlement of larvae are considered potential antifouling compounds. In this study, the extracellular metabolites from two surface- associated bacteria isolated from soft coral and macroalga were evaluated for antibiofilm and antisettlement activity. The bacteria were identified using 16S rRNA gene sequencing, and the culture supernatant extract of each strain was evaluated for antibiofilm activity. The compounds present in the extracts were analysed using GC-MS. The two bacterial strains were identified as Bacillus licheniformis MBR1 and Vibrio alginolyticus MBR4 for the isolates from soft coral and macroalgae, respectively. The extracts inhibited the growth of biofilm-forming bacteria, biofilm formation and barnacle larval settlement. The GC-MS analysis of the extract detected the presence of compounds such as tetrapentacontane, octadecanoic acid, 2,3-dihydroxypropyl ester, hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester and 17-pentatriacontene. The results of the study show that extracellular metabolites of the bacteria associated with marine organisms could be used as natural antifouling compounds to control biofouling.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
325--336
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wykr.
Twórcy
autor
- Department of Marine Biology, King Abdulaziz University Jeddah Jeddah, Saudi Arabia
autor
- Department of Marine Biology, King Abdulaziz University Jeddah Jeddah, Saudi Arabia
autor
- Department of Marine Biology, King Abdulaziz University Jeddah Jeddah, Saudi Arabia
autor
- Department of Marine Biology, King Abdulaziz University Jeddah Jeddah, Saudi Arabia
- Center of Excellence in Environmental Studies, King Abdulaziz University Jeddah Jeddah, Saudi Arabia
autor
- Department of Marine Biology, King Abdulaziz University Jeddah Jeddah, Saudi Arabia, satheesh_s2005@yahoo.co.in;ssathianeson@kau.edu.sa
Bibliografia
- [1]. Abdulrahman, I., Jamal, M. T., Pugazhendi, A., Dhavamani, J., & Satheesh, S. (2022a). Antibiofilm activity of secondary metabolites from bacterial endophytes of Red sea soft corals. International Biodeterioration & Biodegradation, 173, 105462. https://doi.org/10.1016/j.ibiod.2022.105462
- [2]. Abdulrahman, I., Jamal, M. T., & Satheesh, S. (2022b). The anti-settlement activity of extracts of marine bacteria associated with soft corals against barnacle larvae. Egyptian Journal of Aquatic Biology & Fisheries, 26(3), 885-900. https://doi.org/10.21608/ejabf.2022.248212
- [3]. Adnan, M., Alshammari, E., Patel, M., Amir Ashraf, S., Khan, S., & Hadi, S. (2018). Significance and potential of marine microbial natural bioactive compounds against biofilms/biofouling: Necessity for green chemistry. PeerJ, 6, e5049. https://doi.org/10.7717/peerj.5049 PMID:29967730
- [4]. Aguila-Ramírez, R. N., Hernández-Guerrero, C. J., González-Acosta, B., Id-Daoud, G., Hewitt, S., Pope, J., & Hellio, C. (2014). Antifouling activity of symbiotic bacteria from sponge Aplysina gerardogreeni. International Biodeterioration & Biodegradation, 90 (May 2014), 64-70. https://doi.org/10.1016/j.ibiod.2014.02.003
- [5]. Alzieu, C. (1998). Tributyltin: Case study of a chronic contaminant in the coastal environment. Ocean and Coastal Management, 40(1), 23-36. https://doi.org/10.1016/S0964-5691(98)00036-2
- [6]. Antunes, J., Leão, P., & Vasconcelos, V. (2019). Marine biofilms: Diversity of communities and of chemical cues. Environmental Microbiology Reports, 11(3), 287-305. https://doi.org/10.1111/1758-2229.12694 PMID:30246474
- [7]. Arulazhagan, P., & Vasudevan, N. (2009). Role of a moderately halophilic bacterial consortium in the biodegradation of polyaromatic hydrocarbons. Marine Pollution Bulletin, 58(2), 256-262. https://doi.org/10.1016/j.marpolbul.2008.09.017 PMID:18995870
- [8]. Ba-Akdah, M. A., & Satheesh, S. (2021). Characterization and antifouling activity analysis of extracellular polymeric substances produced by an epibiotic bacterial strain Kocuria flava associated with the green macroalga Ulva lactuca. Acta Oceanologica Sinica, 40, 107-115. Advance online publication. https://doi.org/10.1007/s13131-020-1694-x
- [9]. Balqadi, A. A., Salama, A. J., & Satheesh, S. (2018). Microfouling development on artificial substrates deployed in the central Red Sea. Oceanologia, 60(2), 219-231. https://doi.org/10.1016/j.oceano.2017.10.006
- [10]. Bhushan, B. (2016). Bio- and inorganic fouling. In B. Bhushan (Ed.), Biomimetics: Bioinspired hierarchical-structured surfaces for green science and technology (pp. 423-456). Springer International Publishing., https://doi.org/10.1007/978-3-319-28284-8_12
- [11]. Blockley, A., Elliott, D. R., Roberts, A. P., & Sweet, M. (2017). Symbiotic microbes from marine invertebrates: Driving a new era of natural product drug discovery. Diversity (Basel), 9(4), 49. https://doi.org/10.3390/d9040049
- [12]. Bowman, J. P. (2007). Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Marine Drugs, 5(4), 220-241. https://doi.org/10.3390/md504220 PMID:18463726
- [13]. Cámara, M., Green, W., MacPhee, C. E., Rakowska, P. D., Raval, R., Richardson, M. C., Slater-Jefferies, J., Steventon, K., & Webb, J. S. (2022). Economic significance of biofilms: A multidisciplinary and cross-sectoral challenge. NPJ Biofilms and Microbiomes, 8(1), 42. https://doi.org/10.1038/s41522-022-00306-y PMID:35618743
- [14]. Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., & Prinsep, M. R. (2021). Marine natural products. Natural Product Reports, 38(2), 362-413. https://doi.org/10.1039/D0NP00089B PMID:33570537
- [15]. Chambers, L. D., Stokes, K. R., Walsh, F. C., & Wood, R. J. (2006). Modern approaches to marine antifouling coatings. Surface and Coatings Technology, 201(6), 3642-3652. https://doi.org/10.1016/j.surfcoat.2006.08.129
- [16]. Chang, R.-H., Yang, L.-T., Luo, M., Fang, Y., Peng, L.-H., Wei, Y., Fang, J., Yang, J.-L., & Liang, X. (2021). Deep-sea bacteria trigger settlement and metamorphosis of the mussel Mytilus coruscus larvae. Scientific Reports, 11(1), 919. https://doi.org/10.1038/s41598-020-79832-8 PMID:33441694
- [17]. Dhankhar, S., Dhankhar, S., & Yadav, P. (2012). Investigating antimicrobial properties of endophytic fungi associated with Salvadora oleoides decne. Anti-Infective Agents, 11(1), 48-58. https://doi.org/10.2174/22113626130106
- [18]. Dobretsov, S., & Rittschof, D. (2020). Love at first taste: Induction of larval settlement by marine microbes. International Journal of Molecular Sciences, 21(3), 731. https://doi.org/10.3390/ijms21030731 PMID:31979128
- [19]. Dobretsov, S. V., & Qian, P.-Y. (2002). Effect of bacteria associated with the green alga Ulva reticulata on marine micro- and macrofouling. Biofouling, 18(3), 217-228. https://doi.org/10.1080/08927010290013026
- [20]. Eduok, U., Suleiman, R., Gittens, J., Khaled, M., Smith, T. J., Akid, R., El Ali, B., & Khalil, A. (2015). Anticorrosion/antifouling properties of bacterial spore-loaded sol-gel type coating for mild steel in saline marine condition: A case of thermophilic strain of Bacillus licheniformis. RSC Advances, 5(114), 93818-93830. https://doi.org/10.1039/C5RA16494J
- [21]. Egan, S., Holmström, C., & Kjelleberg, S. (2001). Pseudoalteromonas ulvae sp. nov., a bacterium with antifouling activities isolated from the surface of a marine alga. International Journal of Systematic and Evolutionary Microbiology, 51(4), 1499-1504. https://doi.org/10.1099/00207713-51-4-1499 PMID:11491351
- [22]. Elsayed, T., Galil, D., Sedik, M., Hassan, H., & Sadik, M. (2020). Antimicrobial and anticancer activities of actinomycetes isolated from egyptian soils. International Journal of Current Microbiology and Applied Sciences, 9(9), 1689-1700. Advance online publication. https://doi.org/10.20546/ijcmas.2020.909.209
- [23]. Gomez-Banderas, J. (2022). Marine natural products: A promising source of environmentally friendly antifouling agents for the maritime industries. Frontiers in Marine Science, 9, 858757. Advance online publication. https://doi.org/10.3389/fmars.2022.858757
- [24]. Hadfield, M. G. (2011). Biofilms and marine invertebrate larvae: What bacteria produce that larvae use to choose settlement sites. Annual Review of Marine Science, 3, 453-470. https://doi.org/10.1146/annurev-marine-120709-142753 PMID:21329213
- [25]. Harder, T., Dobretsov, S., & Qian, P. Y. (2004). Waterborne polar macromolecules act as algal antifoulants in the seaweed Ulva reticulata. Marine Ecology Progress Series, 274, 133-141. https://doi.org/10.3354/meps274133
- [26]. Hou, X.-M., Hai, Y., Gu, Y.-C., Wang, C.-Y., & Shao, C.-L. (2019). Chemical and bioactive marine natural products of coral-derived microorganisms (2015-2017). Current Medicinal Chemistry, 26(38), 6930-6941. https://doi.org/10.2174/0929867326666190626153819 PMID:31241431
- [27]. Kamat, S., Dixit, R., & Kumari, M. (2022). Endophytic microbiome in bioactive compound production and plant disease management. In A. Kumar (Ed.), Microbial biocontrol: Food security and post harvest management (Vol. 2, pp. 79-128). Springer International Publishing., https://doi.org/10.1007/978-3-030-87289-2_4
- [28]. Kamino, K. (2016). Barnacle underwater attachment. In A. M. Smith (Ed.), Biological adhesives (pp. 153-176). Springer International Publishing., https://doi.org/10.1007/978-3-319-46082-6_7
- [29]. Kaspar, F., Neubauer, P., & Gimpel, M. (2019). Bioactive secondary metabolites from Bacillus subtilis: A comprehensive review. Journal of Natural Products, 82(7), 2038-2053. https://doi.org/10.1021/acs.jnatprod.9b00110 PMID:31287310
- [30]. Krug, P. J. (2006). Defense of benthic invertebrates against surface colonization by larvae: A chemical arms race. In N. Fusetani & A. S. Clare (Eds.), Antifouling compounds (Vol. 42, pp. 1-53). Springer Berlin Heidelberg., https://doi.org/10.1007/3-540-30016-3_1
- [31]. Kumar, D., Karthik, M., & Rajakumar, R. (2018). GC-MS analysis of bioactive compounds from ethanolic leaves extract of Eichhornia crassipes (mart) solms. And their pharmacological activities. Pharma Innov J, 7(8), 459-462.
- [32]. Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293-W296. https://doi.org/10.1093/nar/gkab301 PMID:33885785
- [33]. Ma, Y., Liu, P., Yu, S., Li, D., & Cao, S. (2009). Inhibition of common fouling organisms in mariculture by epiphytic bacteria from the surfaces of seaweeds and invertebrates. Acta Ecologica Sinica, 29(4), 222-226. https://doi.org/10.1016/j.chnaes.2009.08.004
- [34]. Modolon, F., Barno, A. R., Villela, H. D. M., & Peixoto, R. S. (2020). Ecological and biotechnological importance of secondary metabolites produced by coral-associated bacteria. Journal of Applied Microbiology, 129(6), 1441-1457. https://doi.org/10.1111/jam.14766 PMID:32627318
- [35]. Muras, A., Larroze, S., Mayer, C., Teixeira, T., Wengier, R., Benayahu, Y., & Otero, A. (2021a). Evaluation of the anti-fouling efficacy of Bacillus licheniformis extracts under environmental and natural conditions. Frontiers in Marine Science, 8, 711108. Advance online publication. https://doi.org/10.3389/fmars.2021.711108
- [36]. Muras, A., Romero, M., Mayer, C., & Otero, A. (2021b). Biotechnological applications of Bacillus licheniformis. Critical Reviews in Biotechnology, 41(4), 609-627. https://doi.org/10.1080/07388551.2021.1873239 PMID:33593221
- [37]. O’Toole G. A. (2011). Microtiter dish biofilm formation assay. Journal of visualized experiments : JoVE, (47), 2437. https://doi.org/10.3791/2437
- [38]. Ortega-Morales, B. O., Chan-Bacab, M. J., Miranda-Tello, E., Fardeau, M.-L., Carrero, J. C., & Stein, T. (2008). Antifouling activity of sessile bacilli derived from marine surfaces. Journal of Industrial Microbiology & Biotechnology, 35, 9-15. https://doi.org/10.1007/s10295-007-0260-2 PMID:17909869
- [39]. Peng, L.-H., Liang, X., Xu, J.-K., Dobretsov, S., & Yang, J.-L. (2020). Monospecific biofilms of Pseudoalteromonas promote larval settlement and metamorphosis of Mytilus coruscus. Scientific Reports, 10, 2577. https://doi.org/10.1038/s41598-020-59506-1 PMID:32054934
- [40]. Pham, T. M., Wiese, J., Wenzel-Storjohann, A., & Imhoff, J. F. (2016). Diversity and antimicrobial potential of bacterial isolates associated with the soft coral Alcyonium digitatum from the Baltic Sea. Antonie van Leeuwenhoek, 109(1), 105-119. https://doi.org/10.1007/s10482-015-0613-1 PMID:26558794
- [41]. Qian, P.-Y., Xu, Y., & Fusetani, N. (2010). Natural products as antifouling compounds: Recent progress and future perspectives. Biofouling, 26(2), 223-234. https://doi.org/10.1080/08927010903470815 PMID:19960389
- [42]. Rajan, B. M., & Kannabiran, K. (2014). Extraction and identification of antibacterial secondary metabolites from marine Streptomyces sp. Vitbrk2. International Journal of Molecular and Cellular Medicine, 3(3), 130-137. PMID:25317399
- [43]. Salama, A. J., Satheesh, S., & Balqadi, A. A. (2018). Antifouling activities of methanolic extracts of three macroalgal species from the Red Sea. Journal of Applied Phycology, 30, 1943-1953. https://doi.org/10.1007/s10811-017-1345-6
- [44]. Satheesh, S., Ba-Akdah, M. A., & Al-Sofyani, A. A. (2016). Natural antifouling compound production by microbes associated with marine macroorganisms: A review. Electronic Journal of Biotechnology, 21, 26-35. https://doi.org/10.1016/j.ejbt.2016.02.002
- [45]. Satheesh, S., Soniamby, A. R., Sunjaiy Shankar, C. V., & Mary Josephine Punitha, S. (2012). Antifouling activities of marine bacteria associated with sponge (Sigmadocia sp.). Journal of Ocean University of China, 11, 354-360. https://doi.org/10.1007/s11802-012-1927-5
- [46]. Siddik, A., & Satheesh, S. (2019). Characterization and assessment of barnacle larval settlement-inducing activity of extracellular polymeric substances isolated from marine biofilm bacteria. Scientific Reports, 9(1), 17849. https://doi.org/10.1038/s41598-019-54294-9 PMID:31780773
- [47]. Srinivasan, R., Kannappan, A., Shi, C., & Lin, X. (2021). Marine bacterial secondary metabolites: A treasure house for structurally unique and effective antimicrobial compounds. Marine Drugs, 19(10), 530. https://doi.org/10.3390/md19100530 PMID:34677431
- [48]. Steinberg, P. D., & De Nys, R. (2002). Chemical mediation of colonization of seaweed surfaces. Journal of Phycology, 38(4), 621-629. https://doi.org/10.1046/j.1529-8817.2002.02042.x
- [49]. Subba Rao, D. V. (2005). Comprehensive review of the records of the biota of the indian seas and introduction of non-indigenous species. Aquatic Conservation, 15(2), 117-146. https://doi.org/10.1002/aqc.659
- [50]. Sultan, M. H., Zuwaiel, A. A., Moni, S. S., Alshahrani, S., Alqahtani, S. S., Madkhali, O., & Elmobark, M. E. (2020). Bioactive principles and potentiality of hot methanolic extract of the leaves from Artemisia absinthium in vitro cytotoxicity against human mcf-7 breast cancer cells, antibacterial study and wound healing activity. Current Pharmaceutical Biotechnology, 21(15), 1711-1721. https://doi.org/10.2174/1389201021666200928150519 PMID:32988347
- [51]. Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120 PMID:33892491
- [52]. Togashi, N., Shiraishi, A., Nishizaka, M., Matsuoka, K., Endo, K., Hamashima, H., & Inoue, Y. (2007). Antibacterial activity of long-chain fatty alcohols against Staphylococcus aureus. Molecules (Basel, Switzerland), 12(2), 139-148. https://doi.org/10.3390/12020139 PMID:17846563
- [53]. van de Water, J. A. J. M., Allemand, D., & Ferrier-Pagès, C. (2018). Host-microbe interactions in octocoral holobionts - recent advances and perspectives. Microbiome, 6(1), 64. https://doi.org/10.1186/s40168-018-0431-6 PMID:29609655
- [54]. Venkatramanan, M., Sankar Ganesh, P., Senthil, R., Akshay, J., Veera Ravi, A., Langeswaran, K., Vadivelu, J., Nagarajan, S., Rajendran, K., & Shankar, E. M. (2020). Inhibition of quorum sensing and biofilm formation in Chromobacterium violaceum by fruit extracts of Passiflora edulis. ACS Omega, 5(40), 25605-25616. https://doi.org/10.1021/acsomega.0c02483 PMID:33073086
- [55]. Viju, N., Anitha, A., Vini, S., Shankar, C. V., Sathianeson, S., & Punitha, M. (2014). Antibiofilm activities of extracellular polymeric substances produced by bacterial symbionts of seaweeds. Indian Journal of Geo-Marine Sciences, 43(11), 2136-2146.
- [56]. Vinagre, P. A., Simas, T., Cruz, E., Pinori, E., & Svenson, J. (2020). Marine biofouling: A european database for the marine renewable energy sector. Journal of Marine Science and Engineering, 8(7), 495. https://doi.org/10.3390/jmse8070495
- [57]. Wahl, M., Al Sofyani, A., Saha, M., Kruse, I., Lenz, M., & Sawall, Y. (2014). Large scale patterns of antimicrofouling defenses in the hard coral Pocillopora verrucosa in an environmental gradient along the Saudi Arabian coast of the Red Sea. PLoS One, 9(12), e106573. Advance online publication. https://doi.org/10.1371/journal.pone.0106573 PMID:25485603
- [58]. Wang, K.-L., Wu, Z.-H., Wang, Y., Wang, C.-Y., & Xu, Y. (2017). Mini-review: Antifouling natural products from marine microorganisms and their synthetic analogs. Marine Drugs, 15(9), 266. https://doi.org/10.3390/md15090266 PMID:28846626
- [59]. Wang, K.-L., Dou, Z.-R., Gong, G.-F., Li, H.-F., Jiang, B., & Xu, Y. (2022). Anti-larval and anti-algal natural products from marine microorganisms as sources of anti-biofilm agents. Marine Drugs, 20(2), 90. https://doi.org/10.3390/md20020090 PMID:35200620
- [60]. Yebra, D. M., Kiil, S., & Dam-Johansen, K. (2004). Antifouling technology—Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, 50(2), 75-104. https://doi.org/10.1016/j.porgcoat.2003.06.001
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-87747236-d6c0-40fa-9513-c27bda288d23