Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2022 | No. 64 (3) | 445--456
Tytuł artykułu

Tropical cyclone intensity modulated by the oceanic eddies in the Bay of Bengal

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Bay of Bengal, an affluent region for mesoscale oceanic eddies, is also home to devastating tropical cyclones. The intensity modulation of two cyclones, Phailin (2013) and Fani (2019), in the Bay of Bengal by the oceanic eddies is studied. The intensities of both the cyclones rapidly changed after transiting over mesoscale eddies. The surface and subsurface oceanic conditions before and during the passage of the two cyclones were analysed. During Phailin (Fani), the cyclonic (anticyclonic) eddy resulted in significant (weak) sea surface temperature cooling due to the shallow (deep) D26 isotherm. Wind shear estimates revealed that it had no (minor) effect on the weakening (intensification) of Phailin (Fani). The analysis of enthalpy fluxes during the two cyclones has shown that during Phailin (Fani), the latent heat flux supply was reduced (enhanced) by 20 W m−2 (30 W m−2) over the regions of the cyclonic (anticyclonic) eddy due to significant (weak) sea surface temperature cooling. The case study of cyclone interaction with mesoscale oceanic eddies has shown that a thorough understanding of mesoscale eddies is vital for improving the accuracy of the cyclone intensity forecasts.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Strony
445--456
Opis fizyczny
Bibliogr. 48 poz., map., rys., wykr.
Twórcy
  • Ocean Observation Systems, National Institute of Ocean Technology (NIOT), Chennai, India, nkn968@gmail.com
  • Anna University, Guindy Campus, Chennai, India
  • Ocean Observation Systems, National Institute of Ocean Technology (NIOT), Chennai, India
Bibliografia
  • 1. Babu, M.T., Sarma, Y.V.B., Murty, V.S.N., Vethamony, P., 2003. On the circulation in the Bay of Bengal during Northern spring intermonsoon (March—April 1987). Deep Sea Res. Pt. II 50, 855-865. https://doi.org/10.1016/S0967-0645(02)00609-4
  • 2. Chaudhuri, D., Sengupta, D., D’Asaro, E., Venkatesan, R., Ravichandran, M., 2019. Response of the Salinity-Stratified Bay of Bengal to Cyclone Phailin. J. Phys. Oceanogr. 49, 1121-1140. https://doi.org/10.1175/JPO-D-18-0051.1
  • 3. Chen, G., Wang, D., Hou, Y., 2012. The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal. Cont. Shelf Res. 47, 178-185. https://doi.org/10.1016/j.csr.2012.07.011
  • 4. Cheng, X., McCreary, J.P., Qiu, B., Qi, Y., Du, Y., Chen, X., 2018. Dynamics of Eddy Generation in the Central Bay of Bengal. J. Geophys. Res. - Ocean 123, 6861-6875. https://doi.org/10.1029/2018JC014100
  • 5. Cheng, X., Xie, S.-P., McCreary, J.P., Qi, Y., Du, Y., 2013. Intraseasonal variability of sea surface height in the Bay of Bengal. J. Geophys. Res. - Ocean 118, 816-830. https://doi.org/10.1002/jgrc.20075
  • 6. Cione, J.J., Uhlhorn, E.W., 2003. Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Waether Rev. 131, 1783-1796.
  • 7. Demaria, M., Kaplan, J., 1994. Sea Surface Temperature and the Maximum Intensity of Atlantic Tropical Cyclones. J. Clim. 7, 1324-1334. https://doi.org/10.1175/1520-0442(1994)007<1324:SSTATM>2.0.CO;2
  • 8. DeMaria, M., Kaplan, J., 1999. An updated statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Weather Forecast 14 (3), 326-337.
  • 9. Donlon, C., Robinson, I., Casey, K.S., Vazquez-Cuervo, J., Armstrong, E., Arino, O., Gentemann, C., May, D., LeBorgne, P., Piollé, J., Barton, I., Beggs, H., Poulter, D.J.S., Merchant, C.J., Bingham, A., Heinz, S., Harris, A., Wick, G., Emery, B., Minnett, P., Evans, R., Llewellyn-Jones, D., Mutlow, C., Reynolds, R.W., Kawamura, H., Rayner, N., 2007. The Global Ocean Data Assimilation Experiment High-resolution Sea Surface Temperature Pilot Project. Bull. Am. Meteorol. Soc. 88, 1197-1214. https://doi.org/10.1175/BAMS-88-8-1197
  • 10. Emanuel, K.A., 1986. An Air-Sea Interaction Theory for Tropical Cyclones. Part I: Steady-State Maintenance. J. Atmos. Sci. 43, 585-605. https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2
  • 11. Emanuel, K.A., DesAutels, C., Holloway, C., Korty, R., 2004. Environmental Control of Tropical Cyclone Intensity. J. Atmos. Sci. 61, 843-858. https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2
  • 12. Emanuel, K.A., 2013. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. PNAS 110(30), 12219-12224. https://doi.org/10.1073/pnas.1301293110
  • 13. Fisher, E.L., 1958. Hurricanes and the Sea-Surface Temperature Field. J. Atmos. Sci. 15, 328-333. https://doi.org/10.1175/1520-0469(1958)015<0328:HATSST>2.0.CO;2
  • 14. Fitzpatrick, P.J., 1997. Understanding and forecasting tropical cyclone intensity change with the Typhoon Intensity Prediction Scheme (TIPS). Weather Forecast 12 (4), 826-846.
  • 15. Gaube, P., J. McGillicuddy Jr., D., Moulin, A.J., 2019. Mesoscale Eddies Modulate Mixed Layer Depth Globally. Geophys. Res. Lett. 46, 1505-1512. https://doi.org/10.1029/2018GL080006
  • 16. Hacker, P., Firing, E., Hummon, J., Gordon, A.L., Kindle, J.C., 1998. Bay of Bengal currents during the Northeast Monsoon. Geophys. Res. Lett. 25, 2769-2772. https://doi.org/10.1029/98GL52115
  • 17. Halliwell, G.R., Gopalakrishnan, S., Marks, F., Willey, D., 2015. Idealized Study of Ocean Impacts on Tropical Cyclone Intensity Forecasts. Mon. Weather Rev. 143, 1142-1165. https://doi.org/10.1175/MWR- D-14-00022.1
  • 18. Hanley, D., Molinari, J., Keyser, D., 2001. A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Weather Rev. 129 (10), 2570-2584.
  • 19. Hersbach, H., Dee, D., 2016. ERA5 reanalysis is in production. ECMWF Newsl. 147, 5-6. Jaimes, B., Shay, L.K., 2009. Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Weather Rev. 137, 4188-4207.
  • 20. Kurien, P., Ikeda, M., Valsala, V.K., 2010. Mesoscale variability along the east coast of India in spring as revealed from satellite data and OGCM simulations. J. Oceanogr. 66, 273-289. https://doi.org/10.1007/s10872-010-0024-x
  • 21. Li, Z., Yu, W., Li, T., Murty, V.S.N., Tangang, F., 2013. Bimodal character of cyclone climatology in the Bay of Bengal modulated by monsoon seasonal cycle. J. Climate 26 (3), 1033-1046.
  • 22. Liang, J., Wu, L., Gu, G., 2018. Rapid Weakening of Tropical Cyclones in Monsoon Gyres over the Tropical Western North Pacific. J. Climate 31, 1015-1028. https://doi.org/10.1175/JCLI-D-16-0784.1
  • 23. Liang, J., Wu, L., Gu, G., Liu, Q., 2016. Rapid weakening of Typhoon Chan-Hom (2015) in a monsoon gyre. J. Geophys. Res. Atmos. 121, 9508-9520. https://doi.org/10.1002/2016JD025214
  • 24. Lin, I.-I., Chen, C.-H., Pun, I.-F., Liu, W.T., Wu, C.-C., 2009. Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys. Res. Lett. 36. https://doi.org/10.1029/2008GL035815
  • 25. Lin, I.-I., Wu, C.-C., Emanuel, K.A., Lee, I.-H., Wu, C.-R., Pum, I.-F., 2005. The interaction of Supertyphoon Maemi with a warm ocean eddy. Mon. Waether Rev. 133, 2635-2649. https://doi.org/10.1175/MWR3005.1
  • 26. Liu, Y., LÜ, H., Zhang, H., Cui, Y., Xing, X., 2021. Effects of ocean eddies on the tropical storm Roanu intensity in the Bay of Bengal. Plos one 16 (3), e0247521.
  • 27. Lloyd, I.D., Vecchi, G.A., 2011. Observational Evidence for Oceanic Controls on Hurricane Intensity. J. Climate 24, 1138-1153. https://doi.org/10.1175/2010JCLI3763.1
  • 28. Ma, Z., Fei, J., Huang, X., Cheng, X., 2015. Contributions of Surface sensible heat fluxes to tropical cyclone. Part I: Evolution of tropical cyclone intensity and structure. J. Atmos. Sci. 72, 120-140. https://doi.org/10.1175/JAS-D-14-0199.1
  • 29. Ma, Z., 2018. Examining the contribution of surface sensible heat flux induced sensible heating to tropical cyclone intensification from the balance dynamics theory. Dyn. Atmos. Oceans 84, 33-45. https://doi.org/10.1016/j.dynatmoce.2018.09.001
  • 30. Ma, Z., Fei, J., Huang, X., Cheng, X., Liu, L., 2020. A Study of the Interaction between Typhoon Francisco (2013) and a Cold-Core Eddy. Part II: Boundary Layer Structures. J. Atmos. Sci. 77, 2865-2883. https://doi.org/10.1175/JAS-D-19-0339.1
  • 31. Mainelli, M., DeMaria, M., Shay, L.K., Goni, G., 2008. Application of Oceanic Heat Content Estimation to Operational Forecasting of Recent Atlantic Category 5 Hurricanes. Weather Forecast 23, 3-16. https://doi.org/10.1175/2007WAF2006111.1
  • 32. McTaggart-Cowan, R., Bosart, L.F., Davis, C.A., Atallah, E.H., Gyakum, J.R., Emanuel, K.A., 2006. Analysis of Hurricane Catarina (2004). Mon. Weather Rev. 134, 3029-3053.
  • 33. Mei, W., Pasquero, C., 2013. Spatial and Temporal Characterization of Sea Surface Temperature Response to Tropical Cyclones. J. Climate 26, 3745-3765. https://doi.org/10.1175/JCLI-D-12-00125.1
  • 34. Navaneeth, K.N., Martin, M.V, Joseph, K.J., Venkatesan, R., 2019. Contrasting the upper ocean response to two intense cyclones in the Bay of Bengal. Deep Sea Res. Pt. I 147, 65-78. https://doi.org/10.1016/j.dsr.2019.03.010
  • 35. Neetu, S., Lengaigne, M., Vialard, J., Samson, G., Masson, S., Krishnamohan, K.S., Suresh, I., 2019. Premonsoon/postmonsoon Bay of Bengal tropical cyclones intensity: Role of air-sea coupling and large-scale background state. Geophys. Res. Lett. 46 (4), 2149-2157.
  • 36. Paterson, L.A., Hanstrum, B.N., Davidson, N.E., Weber, H.C., 2005. Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region. Mon. Weather Rev. 133 (12), 3644-3660.
  • 37. Prasanna Kumar, S., Nuncio, M., Narvekar, J., Kumar, A., Sardesai, S., de Souza, S.N., Gauns, M., Ramaiah, N., Madhupratap, M., 2004. Are eddies nature’s trigger to enhance biological productivity in the Bay of Bengal? Geophys. Res. Lett. 31, L07309. https://doi.org/10.1029/2003GL019274
  • 38. Prasanna Kumar, S., Nuncio, M., Ramaiah, N., Sardesai, S., Narvekar, J., Fernandes, V., Paul, J.T., 2007. Eddy-mediated biological productivity in the Bay of Bengal during fall and spring intermonsoons. Deep Sea Res. Pt. I 54, 1619-1640. https://doi.org/10.1016/J.DSR.2007.06.002
  • 39. Price, J.F., 1981. Upper ocean response to a hurricane. J. Phys. Oceanogr. 11 (2), 153-175.
  • 40. Rappaport, E.N., Jiing, J.-G., Landsea, C.W., Murillo, S.T., Franklin, J.L., 2012. The Joint Hurricane Testbed: Its first decade of tropical cyclone research-to-operations activities reviewed. Bull. Amer. Meteor. Soc. 93, 371-380.
  • 41. Riehl, H., 1954. Variations of energy exchange between sea and air in the trades. Weather 9, 335-340. https://doi.org/10.1002/j.1477-8696.1954.tb01706.x
  • 42. Sadhuram, Y., Maneesha, K., Ramana Murty, T.V., 2012. Intensification of Aila (May 2009) due to a warm core eddy in the north Bay of Bengal. Nat. Hazards 63, 1515-1525. https://doi.org/10.1007/s11069-011-9837-1
  • 43. Sengupta, D., Goddalehundi, B.R., Anitha, D.S., 2008. Cyclone-induced mixing does not cool SST in the post-monsoon north Bay of Bengal. Atmos. Sci. Lett. 9, 1-6. https://doi.org/10.1002/asl.162
  • 44. Shay, L.K., Goni, G.J., Black, P.G., 2000. Effects of a Warm Oceanic Feature on Hurricane Opal. Mon. Weather Rev. 128, 1366-1383. https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2
  • 45. Singh, V.K., Roxy, M.K., Deshpande, M., 2021. Role of warm ocean conditions and the MJO in the genesis and intensification of extremely severe cyclone Fani. Sci. Rep. 11, 3607. https://doi.org/10.1038/s41598-021-82680-9
  • 46. Venkatesan, R., Shamji, V.R., Latha, G., Mathew, S., Rao, R.R., Muthiah, A., Atmanand, M.A., 2013. In situ ocean subsurface time-series measurements from OMNI buoy network in the Bay of Bengal. Current Sci. 104 (9), 1166-1177.
  • 47. Vinayachandran, P.N., 2013. Impact of Physical Processes on Chlorophyll Distribution in the Bay of Bengal, Indian Ocean Biogeochemical Processes and Ecological Variability. Geophys. Monogr. Ser. https://doi.org/10.1029/2008GM000705
  • 48. Wang, C., Wu, L., 2018. Future Changes of the Monsoon Trough: Sensitivity to Sea Surface Temperature Gradient and Implications for Tropical Cyclone Activity. Earth’s Futur. 6, 919-936. https://doi.org/10.1029/2018EF000858
Uwagi
EN
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8772138c-3858-46c0-b55c-f92cfa559dc3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.