Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 3 | art. no. e208, 2023
Tytuł artykułu

Gravity-induced bistable 2DOF piezoelectric vibration energy harvester for broadband low-frequency operation

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bistability has been proven beneficial for vibration energy harvesting. However, previous bistable harvesters are usually cumbersome in structure and are not necessarily capable of low-frequency operation. To resolve this issue, this paper proposes a compact two-degree-of-freedom (2DOF) bistable piezoelectric energy harvester with simple structure by using an inverted piezoelectric cantilever beam elastically coupled with a swinging mass-bar. The swinging mass-bar possesses bistable property due to the combined effect of the gravity and the elastic joint. It is revealed that, under the inter-well periodic motion pattern which has large swinging amplitude, the swinging mass-bar can exert large force and moment on the piezoelectric cantilever beam, thereby generating large electrical output in this process. Moreover, the inter-well periodic swinging motion can occur in a very broad low-frequency region, enabling broadband low-frequency energy harvesting. An experimental prototype is tested under harmonic excitation and sine frequency sweeping excitation; high electrical output is gained in the frequency range of 2 Hz to 12.6 Hz with a peak power of 3.558mW and a normalized power density of 19.52mW/(g2·cm3), which validates the broadband low-frequency energy harvesting capability.
Wydawca

Rocznik
Strony
art. no. e208, 2023
Opis fizyczny
Bibliogr. 50 poz., rys., wykr.
Twórcy
autor
  • Beijing Key Laboratory On Nonlinear Vibrations and Strength of Mechanical Structures, Beijing University of Technology, Beijing 100124, China, chaoran@bjut.edu.cn
autor
  • Beijing Key Laboratory On Nonlinear Vibrations and Strength of Mechanical Structures, Beijing University of Technology, Beijing 100124, China, sandyzhang9@163.com
  • Department of Mechanics, Guangxi University, Nanning 530004, China
autor
  • Department of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin 150001, China
  • School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
autor
  • Department of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin 150001, China
autor
  • Beijing Key Laboratory On Nonlinear Vibrations and Strength of Mechanical Structures, Beijing University of Technology, Beijing 100124, China
Bibliografia
  • 1. Liu CR, Yu KP. Accurate modeling and analysis of a typical nonlinear vibration isolator with quasi-zero stiffness. Nonlinear Dyn. 2020;100:2141–65.
  • 2. Chen ZL, Yang ZC, Gu YS, Guo SJ. An energy flow model for high-frequency vibration analysis of two-dimensional panels in supersonic airflow. Appl Math Model. 2019;76:495–512.
  • 3. Liu HC, Fu HL, Sun LN, Lee C, Yeatman EM. Hybrid energy harvesting technology: From materials, structural design, system integration to applications. Renew Sust Energ Rev. 2021;137: 110473.
  • 4. Zi YL, Lin L, Wang J, Wang SH, Chen J, Fan X, Yang PK, Yi F, Wang ZL. Triboelectric–Pyroelectric–Piezoelectric Hybrid Cell for High-Efficiency Energy-Harvesting and Self-Powered Sensing. Adv Mater. 2015;27:2340–7.
  • 5. Yildirim T, Ghayesh MH, Li WH, Alici G. A review on perfor- mance enhancement techniques for ambient vibration energy har- vesters. Renew Sust Energ Rev. 2017;71:435–49.
  • 6. Wang YL, Yang ZB, Cao DQ. On the offset distance of rotational piezoelectric energy harvesters. Energy. 2021;220: 119676.
  • 7. Foong FM, Thein CK, Yurchenko D. Important considerations in optimising the structural aspect of a SDOF electromagnetic vibration energy harvester. J Sound Vib. 2020;482: 115470.
  • 8. Dragunov VP, Ostertak DI, Sinitskiy RE. New modifications of a Bennet doubler circuit-based electrostatic vibrational energy harvester. Sensors Actuat A: Phys. 2020;302: 111812.
  • 9. Mohammadi S, Esfandiari A. Magnetostrictive vibration energy harvesting using strain energy method. Energy. 2015;81:519–25.
  • 10. Wang Y, Wu YS, Liu Q, Wang XD, Cao J, Cheng GG, Zhang ZQ, Ding JN, Li K. Origami triboelectric nanogenerator with double-helical structure for environmental energy harvesting. Energy. 2020;212: 118462.
  • 11. Sezer N, Koç M. A comprehensive review on the state-of-the- art of piezoelectric energy harvesting. Nano Energy. 2021;80: 105567.
  • 12. Liang HT, Hao GB, Olszewski OZ. A review on vibration-based piezoelectric energy harvesting from the aspect of compliant mechanisms. Sensors Actuat A: Phys. 2021;331: 112743.
  • 13. Li HD, Tian C, Deng ZD. Energy harvesting from low fre- quency applications using piezoelectric materials. Appl Phys Rev. 2014;1: 041301.
  • 14. Li XY, Yu KP, Upadrashta D, Yang YW. Multi-branch sand- wich piezoelectric energy harvester: Mathematical modeling and validation. Smart Mater Struct. 2018;28: 035010.
  • 15. Li XY, Upadrashta D, Yu KP, Yang YW. Analytical modeling and validation of multi-mode piezoelectric energy harvester. Mech Syst Signal Process. 2019;124:613–31.
  • 16. Chen YB, Yan Z. Nonlinear analysis of unimorph and bimorph piezoelectric energy harvesters with flexoelectricity. Compos Struct. 2021;259: 113454.
  • 17. Yan ZM, Sun WP, Hajj MR, Zhang WM, Tan T. Ultra-broad-band piezoelectric energy harvesting via bistable multi-hardening and multi-softening. Nonlinear Dyn. 2020;100:1057–77.
  • 18. Liu CR, Zhao R, Yu KP, Lee HP, Liao BP. A quasi-zero-stiff- ness device capable of vibration isolation and energy harvesting using piezoelectric buckled beams. Energy. 2021;233: 121146.
  • 19. Li ZY, Tang LH, Yang WQ, Zhao RD, Liu KF, Mace B. Transient response of a nonlinear energy sink based piezoelectric vibration energy harvester coupled to a synchronized charge extraction interface. Nano Energy. 2021;87: 106179.
  • 20. Ju Y, Li Y, Tan JP, Zhao ZX, Wang GQ. Transition mechanism and dynamic behaviors of a multi-stable piezoelectric energy harvester with magnetic interaction. J Sound Vib. 2021;501: 116074.
  • 21. C.R. Liu, B.P. Liao, R. Zhao, K.P. Yu, H.P. Lee, Jie Zhao(2022). Large stroke tri-stable vibration energy harvester: Modelling and experimental validation. Mech Syst Signal Process 168: 108699.
  • 22. Zhang Y, Cao JY, Wang W, Liao WH. Enhanced modeling of non- linear restoring force in multi-stable energy harvesters. J Sound Vib. 2021;494: 115890.
  • 23. Stanton SC, McGehee CC, Mann BP. Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator. Physica D. 2010;239:640–53.
  • 24. Sun SL, Leng YG, Su XK, Zhang YY, Chen XY, Xu JJ. Performance of a novel dual-magnet tri-stable piezoelectric energy harvester subjected to random excitation. Energy Convers Manage. 2021;239: 114246.
  • 25. Mei XT, Zhou SX, Yang ZC, Kaizuka T, Nakano K. Enhancing energy harvesting in low-frequency rotational motion by a quad-stable energy harvester with time-varying potential wells. Mech Syst Signal Process. 2021;148: 107167.
  • 26. Zhou ZY, Qin WY, Yang YF, Zhu P. Improving efficiency of energy harvesting by a novel penta-stable configuration. Sensors Actuat A: Phys. 2017;265:297–305.
  • 27. Naseer R, Abdelkefi A. Nonlinear modeling and efficacy of VIV- based energy harvesters: Monostable and bistable designs. Mech Syst Signal Process. 2022;169: 108775.
  • 28. Li XX, Li ZL, Huang H, Wu ZY, Huang ZF, Mao HL, Cao YD. Broadband spring-connected bi-stable piezoelectric vibration energy harvester with variable potential barrier. Results Phys. 2020;18: 103173.
  • 29. Xu CD, Liang Z, Ren B, Di WN, Luo HS, Wang D, Wang KL, Chen ZF. Bi-stable energy harvesting based on a simply supported piezoelectric buckled beam. J Appl Phys. 2013;114: 114507.
  • 30. Pan DK, Dai FH. Design and analysis of a broadband vibratory energy harvester using bi-stable piezoelectric composite laminate. Energy Convers Manage. 2018;169:149–60.
  • 31. Zhou JX, Zhao XH, Wang K, Chang YP, Xu DL, Wen GL. Bio- inspired bistable piezoelectric vibration energy harvester: Design and experimental investigation. Energy. 2021;228: 120595.
  • 32. Wu N, He YC, Fu JY. Bistable energy harvester using easy snap- through performance to increase output power. Energy. 2021;226: 120414.
  • 33. Hao F, Wang B, Wang X, Tang T, Li Y, Yang Z, Lu J. Soybean-inspired nanomaterial-based broadband piezoelectric energy harvester with local bistability. Nano Energy. 2022;103: 107823.
  • 34. Qian F, Hajj MR, Zuo L. Bio-inspired bi-stable piezoelectric har- vester for broadband vibration energy harvesting. Energy Convers Manage. 2020;222: 113174.
  • 35. Tu D, Zhang Y, Zhu L, Fu H, Qin Y, Liu M, Ding A. A bistable vibration energy harvester with spherical moving magnets: Theoretical modeling and experimental validation. Sensors Actuat A: Phys. 2022;345: 113782.
  • 36. Wang W, Zhang Y, Wei ZH, Cao J. Design and numerical investigation of an ultra-wide bandwidth rolling magnet bistable electromagnetic harvester. Energy. 2022;261: 125311.
  • 37. Li X, Yurchenko D, Li R, Feng X, Yan B, Yang K. Performance and dynamics of a novel bistable vibration energy harvester with appended nonlinear elastic boundary. Mech Syst Signal Process. 2023;185: 109787.
  • 38. Xing J, Fang S, Fu X, Liao WH. A rotational hybrid energy harvester utilizing bistability for low-frequency applications: Modelling and experimental validation. Int J Mech Sci. 2022;222: 107235.
  • 39. Hou Z, Zha W, Wang H, Liao WH, Bowen CR, Cao J. Bistable energy harvesting backpack: Design, modeling, and experiments. Energy Convers Manage. 2022;259: 115441.
  • 40. Wu Z, Xu Q. Design of a structure-based bistable piezoelectric energy harvester for scavenging vibration energy in gravity direction. Mech Syst Signal Process. 2022;162: 108043.
  • 41. Rezaei M, Talebitooti R, Liao WH. Investigations on magnetic bistable PZT-based absorber for concurrent energy harvesting and vibration mitigation: Numerical and analytical approaches. Energy. 2022;239: 122376.
  • 42. Liu H, Zhao L, Chang Y, Shan G, Gao Y. Parameter optimization of magnetostrictive bistable vibration harvester with displacement amplifier. Int J Mech Sci. 2022;223: 107291.
  • 43. Tan D, Zhou J, Wang K, Ouyang H, Zhao H, Xu D. Sliding-impact bistable triboelectric nanogenerator for enhancing energy harvesting from low-frequency intrawell oscillation. Mech Syst Signal Process. 2023;184: 109731.
  • 44. Bai Q, Liao XW, Chen ZW, Gan CZ, Zou HX, Wei KX, Gu Z, Zheng XJ. Snap-through triboelectric nanogenerator with magnetic coupling buckled bistable mechanism for harvesting rotational energy. Nano Energy. 2022;96: 107118.
  • 45. Pinoli M, Blair DG, Ju L. Tests on a low-frequency inverted pendulum system. Meas Sci Technol. 1993;4:995–9.
  • 46. Fakharian O, Salmani H, Kordkheili SAH. A lumped parameter model for exponentially tapered piezoelectric beam in transverse vibration. J Mech Sci Technol. 2019;33:2043–8.
  • 47. Hu GB, Wang JL, Tang LH. A comb-like beam based piezoelec- tric system for galloping energy harvesting. Mech Syst Signal Process. 2021;150: 107301.
  • 48. Kim JE. On the equivalent mass-spring parameters and assumed mode of a cantilevered beam with a tip mass. J Mech Sci Technol. 2017;31:1073–8.
  • 49. Masana R, Daqaq MF. Relative performance of a vibratory energy harvester in mono- and bi-stable potentials. J Sound Vib. 2011;330:6036–52.
  • 50. Yang ZB, Zhou SX, Zu J, Inman D. High-Performance Piezoelectric Energy Harvesters and Their Applications. Joule. 2018;2:642–79.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8734280c-afa7-4acc-b324-ccd608012281
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.