Czasopismo
2023
|
Vol. 23, no. 3
|
art. no. e208, 2023
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Języki publikacji
Abstrakty
Bistability has been proven beneficial for vibration energy harvesting. However, previous bistable harvesters are usually cumbersome in structure and are not necessarily capable of low-frequency operation. To resolve this issue, this paper proposes a compact two-degree-of-freedom (2DOF) bistable piezoelectric energy harvester with simple structure by using an inverted piezoelectric cantilever beam elastically coupled with a swinging mass-bar. The swinging mass-bar possesses bistable property due to the combined effect of the gravity and the elastic joint. It is revealed that, under the inter-well periodic motion pattern which has large swinging amplitude, the swinging mass-bar can exert large force and moment on the piezoelectric cantilever beam, thereby generating large electrical output in this process. Moreover, the inter-well periodic swinging motion can occur in a very broad low-frequency region, enabling broadband low-frequency energy harvesting. An experimental prototype is tested under harmonic excitation and sine frequency sweeping excitation; high electrical output is gained in the frequency range of 2 Hz to 12.6 Hz with a peak power of 3.558mW and a normalized power density of 19.52mW/(g2·cm3), which validates the broadband low-frequency energy harvesting capability.
Czasopismo
Rocznik
Tom
Strony
art. no. e208, 2023
Opis fizyczny
Bibliogr. 50 poz., rys., wykr.
Twórcy
autor
- Beijing Key Laboratory On Nonlinear Vibrations and Strength of Mechanical Structures, Beijing University of Technology, Beijing 100124, China, chaoran@bjut.edu.cn
autor
- Beijing Key Laboratory On Nonlinear Vibrations and Strength of Mechanical Structures, Beijing University of Technology, Beijing 100124, China, sandyzhang9@163.com
- Department of Mechanics, Guangxi University, Nanning 530004, China
autor
- Department of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin 150001, China
autor
- School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
autor
- Department of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin 150001, China
autor
- Beijing Key Laboratory On Nonlinear Vibrations and Strength of Mechanical Structures, Beijing University of Technology, Beijing 100124, China
Bibliografia
- 1. Liu CR, Yu KP. Accurate modeling and analysis of a typical nonlinear vibration isolator with quasi-zero stiffness. Nonlinear Dyn. 2020;100:2141–65.
- 2. Chen ZL, Yang ZC, Gu YS, Guo SJ. An energy flow model for high-frequency vibration analysis of two-dimensional panels in supersonic airflow. Appl Math Model. 2019;76:495–512.
- 3. Liu HC, Fu HL, Sun LN, Lee C, Yeatman EM. Hybrid energy harvesting technology: From materials, structural design, system integration to applications. Renew Sust Energ Rev. 2021;137: 110473.
- 4. Zi YL, Lin L, Wang J, Wang SH, Chen J, Fan X, Yang PK, Yi F, Wang ZL. Triboelectric–Pyroelectric–Piezoelectric Hybrid Cell for High-Efficiency Energy-Harvesting and Self-Powered Sensing. Adv Mater. 2015;27:2340–7.
- 5. Yildirim T, Ghayesh MH, Li WH, Alici G. A review on perfor- mance enhancement techniques for ambient vibration energy har- vesters. Renew Sust Energ Rev. 2017;71:435–49.
- 6. Wang YL, Yang ZB, Cao DQ. On the offset distance of rotational piezoelectric energy harvesters. Energy. 2021;220: 119676.
- 7. Foong FM, Thein CK, Yurchenko D. Important considerations in optimising the structural aspect of a SDOF electromagnetic vibration energy harvester. J Sound Vib. 2020;482: 115470.
- 8. Dragunov VP, Ostertak DI, Sinitskiy RE. New modifications of a Bennet doubler circuit-based electrostatic vibrational energy harvester. Sensors Actuat A: Phys. 2020;302: 111812.
- 9. Mohammadi S, Esfandiari A. Magnetostrictive vibration energy harvesting using strain energy method. Energy. 2015;81:519–25.
- 10. Wang Y, Wu YS, Liu Q, Wang XD, Cao J, Cheng GG, Zhang ZQ, Ding JN, Li K. Origami triboelectric nanogenerator with double-helical structure for environmental energy harvesting. Energy. 2020;212: 118462.
- 11. Sezer N, Koç M. A comprehensive review on the state-of-the- art of piezoelectric energy harvesting. Nano Energy. 2021;80: 105567.
- 12. Liang HT, Hao GB, Olszewski OZ. A review on vibration-based piezoelectric energy harvesting from the aspect of compliant mechanisms. Sensors Actuat A: Phys. 2021;331: 112743.
- 13. Li HD, Tian C, Deng ZD. Energy harvesting from low fre- quency applications using piezoelectric materials. Appl Phys Rev. 2014;1: 041301.
- 14. Li XY, Yu KP, Upadrashta D, Yang YW. Multi-branch sand- wich piezoelectric energy harvester: Mathematical modeling and validation. Smart Mater Struct. 2018;28: 035010.
- 15. Li XY, Upadrashta D, Yu KP, Yang YW. Analytical modeling and validation of multi-mode piezoelectric energy harvester. Mech Syst Signal Process. 2019;124:613–31.
- 16. Chen YB, Yan Z. Nonlinear analysis of unimorph and bimorph piezoelectric energy harvesters with flexoelectricity. Compos Struct. 2021;259: 113454.
- 17. Yan ZM, Sun WP, Hajj MR, Zhang WM, Tan T. Ultra-broad-band piezoelectric energy harvesting via bistable multi-hardening and multi-softening. Nonlinear Dyn. 2020;100:1057–77.
- 18. Liu CR, Zhao R, Yu KP, Lee HP, Liao BP. A quasi-zero-stiff- ness device capable of vibration isolation and energy harvesting using piezoelectric buckled beams. Energy. 2021;233: 121146.
- 19. Li ZY, Tang LH, Yang WQ, Zhao RD, Liu KF, Mace B. Transient response of a nonlinear energy sink based piezoelectric vibration energy harvester coupled to a synchronized charge extraction interface. Nano Energy. 2021;87: 106179.
- 20. Ju Y, Li Y, Tan JP, Zhao ZX, Wang GQ. Transition mechanism and dynamic behaviors of a multi-stable piezoelectric energy harvester with magnetic interaction. J Sound Vib. 2021;501: 116074.
- 21. C.R. Liu, B.P. Liao, R. Zhao, K.P. Yu, H.P. Lee, Jie Zhao(2022). Large stroke tri-stable vibration energy harvester: Modelling and experimental validation. Mech Syst Signal Process 168: 108699.
- 22. Zhang Y, Cao JY, Wang W, Liao WH. Enhanced modeling of non- linear restoring force in multi-stable energy harvesters. J Sound Vib. 2021;494: 115890.
- 23. Stanton SC, McGehee CC, Mann BP. Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator. Physica D. 2010;239:640–53.
- 24. Sun SL, Leng YG, Su XK, Zhang YY, Chen XY, Xu JJ. Performance of a novel dual-magnet tri-stable piezoelectric energy harvester subjected to random excitation. Energy Convers Manage. 2021;239: 114246.
- 25. Mei XT, Zhou SX, Yang ZC, Kaizuka T, Nakano K. Enhancing energy harvesting in low-frequency rotational motion by a quad-stable energy harvester with time-varying potential wells. Mech Syst Signal Process. 2021;148: 107167.
- 26. Zhou ZY, Qin WY, Yang YF, Zhu P. Improving efficiency of energy harvesting by a novel penta-stable configuration. Sensors Actuat A: Phys. 2017;265:297–305.
- 27. Naseer R, Abdelkefi A. Nonlinear modeling and efficacy of VIV- based energy harvesters: Monostable and bistable designs. Mech Syst Signal Process. 2022;169: 108775.
- 28. Li XX, Li ZL, Huang H, Wu ZY, Huang ZF, Mao HL, Cao YD. Broadband spring-connected bi-stable piezoelectric vibration energy harvester with variable potential barrier. Results Phys. 2020;18: 103173.
- 29. Xu CD, Liang Z, Ren B, Di WN, Luo HS, Wang D, Wang KL, Chen ZF. Bi-stable energy harvesting based on a simply supported piezoelectric buckled beam. J Appl Phys. 2013;114: 114507.
- 30. Pan DK, Dai FH. Design and analysis of a broadband vibratory energy harvester using bi-stable piezoelectric composite laminate. Energy Convers Manage. 2018;169:149–60.
- 31. Zhou JX, Zhao XH, Wang K, Chang YP, Xu DL, Wen GL. Bio- inspired bistable piezoelectric vibration energy harvester: Design and experimental investigation. Energy. 2021;228: 120595.
- 32. Wu N, He YC, Fu JY. Bistable energy harvester using easy snap- through performance to increase output power. Energy. 2021;226: 120414.
- 33. Hao F, Wang B, Wang X, Tang T, Li Y, Yang Z, Lu J. Soybean-inspired nanomaterial-based broadband piezoelectric energy harvester with local bistability. Nano Energy. 2022;103: 107823.
- 34. Qian F, Hajj MR, Zuo L. Bio-inspired bi-stable piezoelectric har- vester for broadband vibration energy harvesting. Energy Convers Manage. 2020;222: 113174.
- 35. Tu D, Zhang Y, Zhu L, Fu H, Qin Y, Liu M, Ding A. A bistable vibration energy harvester with spherical moving magnets: Theoretical modeling and experimental validation. Sensors Actuat A: Phys. 2022;345: 113782.
- 36. Wang W, Zhang Y, Wei ZH, Cao J. Design and numerical investigation of an ultra-wide bandwidth rolling magnet bistable electromagnetic harvester. Energy. 2022;261: 125311.
- 37. Li X, Yurchenko D, Li R, Feng X, Yan B, Yang K. Performance and dynamics of a novel bistable vibration energy harvester with appended nonlinear elastic boundary. Mech Syst Signal Process. 2023;185: 109787.
- 38. Xing J, Fang S, Fu X, Liao WH. A rotational hybrid energy harvester utilizing bistability for low-frequency applications: Modelling and experimental validation. Int J Mech Sci. 2022;222: 107235.
- 39. Hou Z, Zha W, Wang H, Liao WH, Bowen CR, Cao J. Bistable energy harvesting backpack: Design, modeling, and experiments. Energy Convers Manage. 2022;259: 115441.
- 40. Wu Z, Xu Q. Design of a structure-based bistable piezoelectric energy harvester for scavenging vibration energy in gravity direction. Mech Syst Signal Process. 2022;162: 108043.
- 41. Rezaei M, Talebitooti R, Liao WH. Investigations on magnetic bistable PZT-based absorber for concurrent energy harvesting and vibration mitigation: Numerical and analytical approaches. Energy. 2022;239: 122376.
- 42. Liu H, Zhao L, Chang Y, Shan G, Gao Y. Parameter optimization of magnetostrictive bistable vibration harvester with displacement amplifier. Int J Mech Sci. 2022;223: 107291.
- 43. Tan D, Zhou J, Wang K, Ouyang H, Zhao H, Xu D. Sliding-impact bistable triboelectric nanogenerator for enhancing energy harvesting from low-frequency intrawell oscillation. Mech Syst Signal Process. 2023;184: 109731.
- 44. Bai Q, Liao XW, Chen ZW, Gan CZ, Zou HX, Wei KX, Gu Z, Zheng XJ. Snap-through triboelectric nanogenerator with magnetic coupling buckled bistable mechanism for harvesting rotational energy. Nano Energy. 2022;96: 107118.
- 45. Pinoli M, Blair DG, Ju L. Tests on a low-frequency inverted pendulum system. Meas Sci Technol. 1993;4:995–9.
- 46. Fakharian O, Salmani H, Kordkheili SAH. A lumped parameter model for exponentially tapered piezoelectric beam in transverse vibration. J Mech Sci Technol. 2019;33:2043–8.
- 47. Hu GB, Wang JL, Tang LH. A comb-like beam based piezoelec- tric system for galloping energy harvesting. Mech Syst Signal Process. 2021;150: 107301.
- 48. Kim JE. On the equivalent mass-spring parameters and assumed mode of a cantilevered beam with a tip mass. J Mech Sci Technol. 2017;31:1073–8.
- 49. Masana R, Daqaq MF. Relative performance of a vibratory energy harvester in mono- and bi-stable potentials. J Sound Vib. 2011;330:6036–52.
- 50. Yang ZB, Zhou SX, Zu J, Inman D. High-Performance Piezoelectric Energy Harvesters and Their Applications. Joule. 2018;2:642–79.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8734280c-afa7-4acc-b324-ccd608012281