Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | R. 19, nr 3 | 100-106
Tytuł artykułu

Fatigue life prediction of glass reinforced composite materials using Weibull distribution

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cyclic bending fatigue tests were conducted on randomly oriented short multidirectional glass fiber-reinforced polyester matrices. Standard test specimens were manufactured in rectangles with a volume fraction of 40% glass fibers. The experimental fatigue life results were fitted using S-N curves, which are based on power function equations. S-N curves, which are characterized by important and significant scatter over the lifetime, were correlated using the two-parameter Weibull distribution function to determine the probability of failure and to plot the S-N curves at different reliability levels. These curves are of considerable design value in practical applications of composite materials and predict the sample response at the time of service depending on the degree of reliability.
Wydawca

Rocznik
Strony
100-106
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Civil and Hydraulic Engineering Department, Mohammed Sedik Benyahia University, 18000, Jijel, Algeria, djameldjeghader@yahoo.fr
  • Civil Engineering Department, Badji Mokhtar University, 23000, Annaba, Algeria
Bibliografia
  • [1] Gassan J., A study of fibre and interface parameters affecting the fatigue behavior of natural fiber composites, Compos. Part A-Appl. S. 2002 March, 33, 3, 369-374, https://doi.org/10.1016/S1359-835X(01)00116-6.
  • [2] Nojavan S., Schesser D., Yang Q.D., A two-dimensional in situ fatigue cohesive zone model for crack propagation in composites under cyclic loading, Inter. J. Fatigue 2016 February, 82, 3, 449-461, https://doi.org/10.1016/j.ijfatigue. 2015.08.029.
  • [3] Luo Z., Cao H., Ren H., Zhou X., Tension-tension fatigue behavior of a PIP SiC/SiC composite at elevated temperature in air, Ceram. Int. 2002 February, 42, 2, 3250-3260, https://doi.org/10.1016/j.ceramint.2015.10.116.
  • [4] Gagani A.I., Monsås A.B., Krauklis A.E., Echtermeyer A.T., The effect of temperature and water immersion on the interlaminar shear fatigue of glass fiber epoxy composites using the I-beam method, Compos. Sci. Technol. 2019, September, 181, 107703, https://doi.org/10.1016/j.compscitech.2019.107703.
  • [5] Bathias C., Pineau A., Fatigue of Materials and Structures: Fundamentals, ISTE Ltd and John Wiley & Sons, Inc, 2010.
  • [6] Wang Y., Yu W., Wang F., Experimental evaluation and modified Weibull characterization of the tensile behavior of tri-component elastic-conductive composite yarn, Text. Res. J. 2017, March, 88, 10, 1138-1149, https://doi.org/ 10.1177/0040517517698991.
  • [7] Hwang W., Han K.S., Statistical study of strength and fatigue life of composite materials, Composites 1987, January, 18, 1, 47-53, https://doi.org/10.1016/0010-4361(87)90007-3.
  • [8] Sørensen B.F., Goutianos S., Micromechanical model for prediction of the fatigue limit for unidirectional fibre composites, Mech. Mater. 2019, April, 131, 169-187, https://doi.org/10.1016/j.mechmat.2019.01.023.
  • [9] Long M.W., Narciso J.D., Probabilistic Design Methodology for Composite Aircraft Structures, Repport Office of Aviation Research, Washington 1999.
  • [10] Hanif A., Usman M., Lu Z., Cheng Y., Li Z., Flexural fatigue behavior of thin laminated cementitious composites incorporating cenosphere fillers, Mater. Design 2018, February, 140, 267-277, https://doi.org/10.1016/j.matdes. 2017.12.003.
  • [11] Sohel K.M.A., Al-Jabri K., Zhang M.H., Richard L.J.Y., Flexural fatigue behavior of ultra-lightweight cement composite and high strength lightweight aggregate concrete, Constr. Build. Mater. 2018, June, 173, 90-100, https://doi.org/10.1016/j.conbuildmat.2018.03.276.
  • [12] Noël M., Probabilistic fatigue life modelling of FRP composites for construction, Constr. Build. Mater. 2019, May, 206, 279-286, https://doi.org/10.1016/j.conbuildmat.2019.02.082.
  • [13] Cohen D., Application of reliability and fiber probabilistic strength distribution concept to composite vessel burststrength design, J. Compos. Mater. 1984, December, 26, 13, 1984-2014, https://doi.org/10.1177/002199839202601307.
  • [14] Selmy A.I., Abd El-baky M.A., Azab N.A., Experimental study on flexural fatigue behavior of glass fibers/epoxy hybrid composites with statistical analysis, J. Reinf. Plast. Comp. 2013, July, 32, 23, 1821-1834, https://doi.org/10.1177/0731684413496879.
  • [15] Djeghader D., Redjel B., Effect of water absorption on the Weibull distribution of fatigue test in jute-reinforced polyester composite materials, Adv. Compos. Lett. 2019, May, 28, 3, 1-11, https://doi.org/10.1177/0963693519853833.
  • [16] Djeghader D., Redjel B., Fatigue resistance of randomly oriented short glass fiber reinforced polyester composite materials immersed in seawater environment, Mech. Ind. 2017, November, 18, 604, https://doi.org/10.1051/meca/2016087.
  • [17] Nechad H., Evaluation de l’endommagement et de la rupture de matériaux hétérogènes par ultrasons et émission acoustique: Estimation de la durée de vie restante, Ph.D. Thesis, Institut National des Sciences Appliquées de Lyon, Lyon, French 2004.
  • [18] Mohammad M., Abdullah S., Jamaludin N., Innayatullah O., Predicting the fatigue life of the SAE 1045 steel using an empirical Weibull-based model associated to acoustic emission parameters, Mater. Design. 2014, February, 54, 1039-1048, https://doi.org/10.1016/j.matdes.2013.09.021.
  • [19] Sakin R., Ay I., Statistical analysis of bending fatigue life data using Weibull distribution in glass-fiber reinforced polyester composites, Mater. Design. 2008, 29, 6, 1170-1181, https://doi.org/10.1016/j.matdes.2007.05.005.
  • [20] Khashaba U.A., Fatigue and reliability analysis of unidirectional GFRP composites under rotating bending loads, J. Compos. Mater. 2003, February, 37, 4, 317-331, https://doi.org/10.1177/0021998303037004680.
  • [21] Weibull W., A statistical distribution function of wide applicability, J. Appl. Mech. 1951, 18, 293-297.
  • [22] Hwang W., Han K.S., Statistical study of strength and fatigue life of composite materials, Compo. 1987, January, 18, 1, 47-53, https://doi.org/10.1016/0010-4361(87)90007-3.
  • [23] Haidyrah A.S., Newkirk J.W., Castano C.H., Weibull statistical analysis of Krouse type bending fatigue of nuclear materials, J. Nucl. Mater. 2016, March, 470, 244-250, https://doi.org/10.1016/j.jnucmat.2015.12.016.
  • [24] Bohoris G.A., Gamma function tables for the estimation of the mean and standard deviation of the weibull distribution, Qual. Reliab. Eng. Int. 1994, 10, 2, 105-115, https://doi.org/10.1002/qre.4680100205.
  • [25] Zhou G., Davies G.A.O., Characterization of thick glass woven roving/polyester laminates: 2. Flexure and statistical considerations, Compo. 1995, August, 26, 8, 587-596, https://doi.org/10.1016/0010-4361(95)92623-K.
  • [26] Liang S., Gning P.B., Guillaumat L., Properties evolution of flax/epoxy composites under fatigue loading, Inter. J. Fatigue 2014, June, 63, 36-45, https://doi.org/10.1016/j.ijfatigue.2014.01.003.
  • [27] Harris B., Fatigue in Composites, Woodhead Publishing, Materials Research Centre, University of Bath, UK, Part I. ISBN: 978-1-85573-608-5, 2003.
  • [28] Khashaba U.A., Aljinaidi A.A., Hamed M.A., Fatigue and reliability analysis of nano-modified scarf adhesive joints in carbon fiber composites, Compos. Part B-Ing 2017, July, 120, 103-117, https://doi.org/10.1016/j.compositesb.2017.04.001.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-872253ff-3c43-4999-bfbd-8812cdcc9c30
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.