Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, no. 1 | 96--107
Tytuł artykułu

A Review on the Performance and Comfort of Stab Protection Armor

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stab-protective clothing is the most important component of safety equipment and it helps to save the lives of its wearers; therefore, it is designed to resist knife, nail, or needle attacks, especially to the upper body. In this paper, the essential requirements for stab-resistant armor are investigated based on an in-depth review of previous research and prototype test results. The combination of protection and comfort in armor vests is a particularly challenging task. Review of the state of the art technology responsible for the manufacture of stab-resistant clothes has revealed that their design and development should encompass the elements of comfort, freedom of movement, permeability, absorption, evaporation, and weight reductions to ensure excellent ergonomics and high wear comfort. The design as well as the production, weight, thickness, material types and properties, and the arrangement of scales determine the level of protection and comfort offered by stab-resistant vests. Currently, the production of stab-proof gear-based 3D printing technology is evaluated, using lightweight materials (aramid) in the form of segmented scales inspired by nature. As the protection performance and wear comfort of stab-proof gear is enhanced, the willingness of security, control, transport, custom, and correction officers to wear them can be significantly increased in an endeavor to ensure that fatal injuries will decrease significantly.
Słowa kluczowe
Wydawca

Rocznik
Strony
96--107
Opis fizyczny
Bibliogr. 103 poz.
Twórcy
  • Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia, dereje.berihun@bdu.edu.et
  • Institute of Textile Machinery and High Performance Material Technology, Chair of Ready-Made Technology, Technische Universität Dresden, 01062 Dresden, Germany
  • Institute of Textile Machinery and High Performance Material Technology, Chair of Ready-Made Technology, Technische Universität Dresden, 01062 Dresden, Germany
  • Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
Bibliografia
  • [1] Reiners P. Investigation about the stab resistance of textile structures, methods for their testing and improvements. HAL: Université de Haute Alsace; 2016.
  • [2] Fenne P. Protection against knives and other weapons. . Scott RA, editor. Cambridge: Woodhead Publishing, CRC; 2005.
  • [3] Alil L-C, Barbu C, Badea S, Ilie F. Aspects regarding the use of polyethylene fibers for personal armor. Eastern Michigan University. 2004.
  • [4] Cavallaro PV. Soft Body Armor: An Overview of Materials, Manufacturing, Testing, and Ballistic Impact Dynamics. In: Division NUWC, editor.: NUWCD-NPT-TR.; 2011.
  • [5] Laible R. Ballistic Materials and Penetration Mechanics (Methods and phenomena, their applications in science and technology): Elsevier; 2012.
  • [6] Justice NIo. Office of Justice Programs, U.S. Department of Justice. Stab Resistance of Personal Body Armor NIJ Standard-011500. Washington: US National Institute of Justice; 2000.
  • [7] LaTourrette T. The life-saving effectiveness of body armor for police officers. Journal of occupational and environmental hygiene. 2010;7(10):557–62. Epub 2010/07/17.
  • [8] Peleg K, Rivkind A, Aharonson-Daniel L. Does body armor protect from firearm injuries? Journal of the American College of Surgeons. 2006;202(4):643–8. Epub 2006/03/31.
  • [9] Jaslow CR. Mechanical properties pf cranal sutures. Journal of Biomechanical. 1990;23(4):313–21.
  • [10] Greaves I. Military Medicine in Iraq and Afghanistan: A Comprehensive Review: Taylor & Francis Group, CRC Press; 2018.
  • [11] Ricciardi R, Deuster PA, Talbot LA. Metabolic Demands of Body Armor on Physical Performance in Simulated Conditions. MILITARY MEDICINE. 2008;173(9):817.
  • [12] Park H, Branson D, Petrova A, Peksoz S, Jacobson B, Warren A, et al. Impact of ballistic body armour and load carriage on walking patterns and perceived comfort. Ergonomics. 2013;56(7):1167–79. Epub 2013/05/10.
  • [13] Matusiak M. Thermal Comfort Index as a Method of Assessing the Thermal Comfort of Textile Materials FIBRES & TEXTILES in Eastern Europe. 2010;18(2):45–50.
  • [14] Voelker C, Hoffmann S, Kornadt O, Arens E, Zhang H, Huizenga C. Heat and moisture transfer through clothing. Eleventh International IBPSA Conference; Glasgow, Scotland: University of Strathclyde; 2009. p. 1360–6.
  • [15] Djongyang N, Tchinda R, Njomo D. Thermal comfort: A review paper. Renewable and Sustainable Energy Reviews. 2010;14(9):2626–40.
  • [16] Zehner GF, Ervin C, Robinette KM, Daziens P. Fit evaluation of female body armor. USA: 1987 Contract No.: AAMRL-TR-87-046.
  • [17] Larsen B, Netto K, Skovli D, Vincs K, Vu S, Aisbett B. Body armor, performance, and physiology during repeated high-intensity work tasks. Military medicine. 2012;177(11):1308–15. Epub 2012/12/04.
  • [18] Chinevere TD, Cadarette BS, Goodman DA, Ely BR, Cheuvront SN, Sawka MN. Efficacy of body ventilation system for reducing strain in warm and hot climates. European journal of applied physiology. 2008;103(3):307–14. Epub 2008/03/11.
  • [19] Nayak R, Crouch I, Kanesalingam S, Ding J, Tan P, Lee B, et al. Body armor for stab and spike protection, Part 1: Scientific literature review. Textile Research Journal. 2017;88(7):812–32.
  • [20] Nayak R, Kanesalingam S, Wang L, Padhye R. Stab resistance and thermophysiological comfort properties of boron carbide coated aramid and ballistic nylon fabrics. The Journal of The Textile Institute. 2018;110(8):1159–68.
  • [21] Holmes DA. Perfoirnance Characteristics of Waterproof Breathable Fabrics. JOURNAL OF INDUSTRIAL TEXTILES. 2000;29(4):306–16.
  • [22] Nayak R, Punj S, Chatterjee K, Behera BK. Comfort properties of suiting fabrics. Indian Journal of Fibre and Textile. 2009;34:122–8.
  • [23] philippe F, Schacher L, Adolphe DC, Dacremont C. Tactile Feeling: Sensory Analysis Applied to Textile Goods. Textile Research Journal. 2004;74(12):1066–72.
  • [24] Dempsey PC, Handcock PJ, Rehrer NJ. Impact of police body armour and equipment on mobility. Appl Ergon. 2013;44(6):957–61. Epub 2013/05/15.
  • [25] Legg SJ. Influence of body armour on pulmonary function. Ergonomics. 1988;31(3):349–53. Epub 1988/03/01.
  • [26] Ricciardi R, Deuster PA, Talbot LA. Effects of Gender and Body Adiposity on Physiological Responses to Physical Work While Wearing Body Armor. MILITARY MEDICINE. 2007;172(7):743.
  • [27] Armasure. Stab Knife Proof Concealable Covert Vest Jackets 36 Joules Body Armour-NIJ I Standard (24J/36J Overtest). UK: eBay Inc.; 2019.
  • [28] Courtney AC, Courtney MW. A thoracic mechanism of mild traumatic brain injury due to blast pressure waves. Medical hypotheses. 2009;72(1):76–83. Epub 2008/10/03.
  • [29] Xydakis MS, Fravell MD, Nasser KE, Casler JD. Analysis of battlefield head and neck injuries in Iraq and Afghanistan. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery. 2005;133(4):497–504. Epub 2005/10/11.
  • [30] Ritenour AE, Baskin TW. Primary blast injury: update on diagnosis and treatment. Critical care medicine. 2008;36(7 Suppl):S311–7. Epub 2008/07/18.
  • [31] Afshari M, Sikkema DJ, Lee K, Bogle M. High Performance Fibers Based on Rigid and Flexible Polymers. Polymer Reviews. 2008;48(2):230–74.
  • [32] Ambade VN, Godbole HV. Comparison of wound patterns in homicide by sharp and blunt force. Forensic Sci Int. 2006;156(2–3):166–70. Epub 2005/08/27.
  • [33] Hugar BS, Chandra G, Harish M, Jayanth S. Pattern of Homicidal Deaths. Journal of Indian Academy Forensic Medicine, 32(3). 2016;32(3).
  • [34] Henderson JP, Morgan SE, Patel F, Tiplady ME. Patterns of non-firearm homicide. Journal of clinical forensic medicine. 2005;12(3):128–32. Epub 2005/05/26.
  • [35] Scott RA. Textiles for Protection. 1 ed: Woodhead Publishing; 2005.
  • [36] Bleetman A, Watson CH, Horsfall I, Champion SM. Wounding patterns and human performance in knife attacks: optimising the protection provided by knife-resistant body armour. Journal of clinical forensic medicine. 2003;10(4):243–8. Epub 2004/07/28.
  • [37] Ahrendt D, Krzywinski S, Massot EJi, Krzywinski J. Hybrid material designs by the example of additive manufacturing for novel customized stab protective clothing. Light Weight Armour Group for Defense and Security; Roubaix, France 2019. p. 286–94.
  • [38] Hainsworth SV, Delaney RJ, Rutty GN. How sharp is sharp? Towards quantification of the sharpness and penetration ability of kitchen knives used in stabbings. International journal of legal medicine. 2008;122(4):281–91. Epub 2007/09/28.
  • [39] Horsfall I, Watson C, Champion S, Prosser P, Ringrose T. The effect of knife handle shape on stabbing performance. Appl Ergon. 2005;36(4):505–11. Epub 2005/05/17.
  • [40] Jones S, Nokesa L, Leadbeatterb S. The mechanics of stab wounding. Forensic Sci Int. 1994;67:59–63.
  • [41] Chadwick EKJ, Nicol AC, Lane JV, Gray TGF. Biomechanics of knife stab attacks. Forensic Sci Int. 1999;105:35–44.
  • [42] Horsfall I. Stab resistant body armor: Cranfield University; 2000.
  • [43] Clerici CA, Muccino E, Gentile G, Marchesi M, Veneroni L, Zoja R. An unusual case of homicide with a crossbow and a hunting knife. Medicine, science, and the law. 2015;55(2):86–9. Epub 2014/06/18.
  • [44] Egres RG, Lee YS, Kirkwood JE, Kirkwood KM, Wetzel ED, Wagner NJ, editors. “Liquid armor”: Protective fabrics utilizing shear thickening fluids. IFAL 4th International Conference on Safety and Protectve Fabrics; 2004; Pittsburgh, USA.
  • [45] Pounder DJ, Cormack L, Broadbent E, Millar J. Class characteristics of serrated knife stabs to cartilage. The American journal of forensic medicine and pathology. 2011;32(2):157–60. Epub 2010/04/22.
  • [46] Li Y, Ortiz C, Boyce MC. Bioinspired, mechanical, deterministic fractal model for hierarchical suture joints. Physical review E, Statistical, nonlinear, and soft matter physics. 2012;85(3):031901(14). Epub 2012/05/17.
  • [47] Ji B, Gao H. Mechanical properties of nanostructure of biological materials. Journal of the Mechanics and Physics of Solids. 2004;52(9).
  • [48] Barthelat F, Tang H, Zavattieri D, Li C, Espinosa D. On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. Journal of the Mechanics and Physics of Solids. 2007;55(2):306–37.
  • [49] Pritchard J, Scott J, Girgis G. The structure and development of cranial and facial sutures. Journal of Anatomy. 1956;90(1):73–86.
  • [50] Herring SW. Mechanical influences on suture development and patency. Frontiers of oral biology. 2008;12:41–56. Epub 2008/04/09.
  • [51] Krauss S, Monsonego-Ornan E, Zelzer E, Fratzl P, Shahar R. Mechanical Function of a Complex Three-Dimensional Suture Joining the Bony Elements in the Shell of the Red-Eared Slider Turtle. Advanced Materials. 2009;21(4):407–12.
  • [52] Garcia AP, Pugno N, Buehler MJ. Superductile, Wavy Silica Nanostructures Inspired by Diatom Algae. Advanced Engineering Materials. 2011;13(10):B405–B14.
  • [53] Dunlop JWC, Weinkamer R, Fratzl P. Artful interfaces within biological materials. Materials Today. 2011;14(3):70–8.
  • [54] Vernerey FJ, Barthelat F. On the mechanics of fishscale structures. International Journal of Solids and Structures. 2010;47(17):2268–75.
  • [55] Dastjerdi AK, Barthelat F. Teleost fish scales amongst the toughest collagenous materials. J Mech Behav Biomed Mater. 2015;52:95–107. Epub 2014/12/03.
  • [56] Zhu D, Szewciw L, Vernerey F, Barthelat F. Puncture resistance of the scaled skin from striped bass: collective mechanisms and inspiration for new flexible armor designs. J Mech Behav Biomed Mater. 2013;24:30–40. Epub 2013/05/21.
  • [57] Lin YS, Wei CT, Olevsky EA, Meyers MA. Mechanical properties and the laminate structure of Arapaima gigas scales. J Mech Behav Biomed Mater. 2011;4(7):1145–56. Epub 2011/07/26.
  • [58] Connors MJ, Ehrlich H, Hog M, Godeffroy C, Araya S, Kallai I, et al. Three-dimensional structure of the shell plate assembly of the chiton Tonicella marmorea and its biomechanical consequences. Journal of structural biology. 2012;177(2):314–28. Epub 2012/01/18.
  • [59] Martini R, Balit Y, Barthelat F. A comparative study of bio-inspired protective scales using 3D printing and mechanical testing. Acta biomaterialia. 2017;55:360–72. Epub 2017/03/23.
  • [60] Suzuki Y, Kopp R, Kogure T, Suga A, Takai K, Tsuchida S, et al. Sclerite formation in the hydrothermal-vent “scaly-foot” gastropod—possible control of iron sulfide biomineralization by the animal. Earth and Planetary Science Letters. 2006;242(1–2):39–50.
  • [61] Pangolin-Conservation-Support-Initiative. Save Pangolins. 2019.
  • [62] Chintapalli RK, Mirkhalaf M, Dastjerdi AK, Barthelat F. Fabrication, testing and modeling of a new flexible armor inspired from natural fish scales and osteoderms. Bioinspiration & biomimetics. 2014;9(3):036005. Epub 2014/03/13.
  • [63] Browning A, Ortiz C, Boyce MC. Mechanics of composite elasmoid fish scale assemblies and their bioinspired analogues. J Mech Behav Biomed Mater. 2013;19:75–86. Epub 2013/03/23.
  • [64] Porter M, Ravikumar N, Barthelat F, Martini R. 3D-printing and mechanics of bio-inspired articulated and multi-material structures. Journal of the mechanical behavior of biomedical materials. 2017;73:114–26.
  • [65] Yang W, Chen I, Gludovatz B, Zimmermann E, Ritchie R, Meyers M. Natural flexible dermal armor. Advanced Materials. 2013;25(1):31–48.
  • [66] Bruet BJ, Song J, Boyce MC, Ortiz C. Materials design principles of ancient fish armour. Nature materials. 2008;7(9):748–56. Epub 2008/07/29.
  • [67] Li Y, Ortiz C, Boyce MC. Stiffness and strength of suture joints in nature. Physical review E, Statistical, nonlinear, and soft matter physics. 2011;84(6 Pt 1):062904. Epub 2012/02/07.
  • [68] Zhang Y, Yao H, Ortiz C, Xu J, Dao M. Bio-inspired interfacial strengthening strategy through geometrically interlocking designs. J Mech Behav Biomed Mater. 2012;15:70–7. Epub 2012/10/04.
  • [69] Li Y, Ortiz C, Boyce MC. A generalized mechanical model for suture interfaces of arbitrary geometry. Journal of the Mechanics and Physics of Solids. 2013;61(4):1144–67.
  • [70] Vernerey FJ, Barthelat F. Skin and scales of teleost fish: Simple structure but high performance and multiple functions. Journal of the Mechanics and Physics of Solids. 2014;68:66–76.
  • [71] Lee YS, Wetzel ED, Wagner NJ. The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid. Journal of Materials Science. 2003;38(13):2825–33.
  • [72] Guzman AG, Geddis AM, Henrich MJ, Lohrstorfer CF, Neuman SP. Summary of air permeability data from single-hole injection tests in unsaturated fractured tuffs at the Apache Leap Research Site: Results of steady-state test interpretation. ; Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications; Arizona Univ., Tucson, AZ (United States). Dept. of Hydrology and Water Resources, 1996 NUREG/CR-6360; Other: ON: TI96009930; TRN: 96:011321 United States 10.2172/219309 Other: ON: TI96009930; TRN: 96:011321 INIS; OSTI as TI96009930 OSTI English.
  • [73] Barker J, Black C, Cloud R. Comfort comparison of ballistic vest panels for police officers. Journal of Textile and Apparel, Technology and Management. 2010;6(3):1–12.
  • [74] El Messiry M, Eltahan E. Stab resistance of triaxial woven fabrics for soft body armor. Journal of Industrial Textiles. 2014;45(5):1062–82.
  • [75] Flambard X, Ferreira M, Vermeulen B, Bourbigot S. Mechanical and thermal behaviors of first choice, second choice and recycled p-aramid fibers. Journal of Textile and Apparel, Technology and Management. 2004;4(1):1–12.
  • [76] Decker MJ, Halbach CJ, Nam CH, Wagner NJ, Wetzel ED. Stab resistance of shear thickening fluid (STF)-treated fabrics. Composites Science and Technology. 2007;67(3–4):565–78.
  • [77] Shin H-S, Erlich DC, Simons JW, Shockey DA. Cut Resistance of High-strength Yarns. Textile Research Journal. 2016;76(8):607–13.
  • [78] Hosur MV, Mayo Jr JB, Wetzel E, Jeelani S. Studies on the Fabrication and Stab Resistance Characterization of Novel Thermoplastic-Kevlar Composites. Solid State Phenomena. 2008;136:83–92.
  • [79] Crouch IG. Body armour – New materials, new systems. Defence Technology. 2019;15(3):241–53.
  • [80] Tavanai H, Wang L, Golozar M, Ebrahimzade M. An investigation on the piercing resistance of abrasive particle coated fabrics. The 1st International and the 7th National Iranian Textile Engineering Conference; Iran: ACECRAmirkabir University of Technology Branch; 2009.
  • [81] Govarthanam KK, Anand SC, Rajendran S. Handbook of technical textiles. 2 ed. UK: Matthew Deans; 2016.
  • [82] Lee BL, Walsh TF, Won ST, Patts HM, Song JW, Mayer AH. Penetration Failure Mechanisms of Armor-Grade Fiber Composites under Impact. Journal of Composite Materials. 2016;35(18):1605–33.
  • [83] Shim VPW, Lim CT, Foo KJ. Dynamic mechanical properties of fabric armour. International Journal of Impact Engineering. 2001;25(1):1–15.
  • [84] McConnell VP. Ballistic protection materials a moving target. Reinforced Plastics. 2006;50(11):20–5.
  • [85] Rebouillata S, Pengb J, Donnetb J. Surface structure of Kevlarw fiber studied by atomic force microscopy and inverse gas chromatography. Polymer. 1999;40:7341–50.
  • [86] Hani ARA, Roslan A, Mariatti J, Maziah M. Body Armor Technology: A Review of Materials, Construction Techniques and Enhancement of Ballistic Energy Absorption. Advanced Materials Research. 2012;488–489:806–12.
  • [87] Teijin A. Twaron-a versatile high-performance fibre. company product. 2012 40-00-01.
  • [88] Tien DT, Kim JS, Huh Y. Stab-resistant property of the fabrics woven with the aramid/cotton core-spun yarns. Fibers and Polymers. 2010;11(3):500–6.
  • [89] Sinnappoo K, Arnold L, Padhye R. Application of wool in high-velocity ballistic protective fabrics. Textile Research Journal. 2010;80(11):1084–92.
  • [90] Reiners P, Kyosev Y, Schacher L, Adolphe D, Küster K. Experimental investigation of the influence of wool structures on the stab resistance of woven body armor panels. Textile Research Journal. 2015;86(7):685–95.
  • [91] Phillips M, Bazrgari B, Shapiro R. The effects of military body armour on the lower back and knee mechanics during toe-touch and two-legged squat tasks. Ergonomics. 2015;58(3):492–503. Epub 2014/10/25.
  • [92] Konitzer LN, Fargo MV, Brininger TL, Reed LM. Association between back, neck, and upper extremity musculoskeletal pain and the individual body armor. Journal of Hand Therapy. 2008;21(2):143–9.
  • [93] Barker JF. Comfort Perceptions of Police Officers Toward Ballistic Vests. Tallahassee, Florida: Florida State University; 2007.
  • [94] Rupp J, Böhringer A, Yonenaga A, Hilden J. Textiles for protection against harmful ultraviolet radiation. International Textile Bulletin. 2001;47(6):8–20.
  • [95] Sparks E, editor. Advances in Military Textiles and Personal Equipment: Woodhead publishing; 2012.
  • [96] Yuan MQ, Liu Y, Gong Z, Qian XM. The application of PA/CF in stab resistance body armor. IOP Conference Series: Materials Science and Engineering. 2017;213:012027.
  • [97] Croft J, Longhurst D, Branch GBHOSD. HOSDB Body Armour Standards for UK Police (2007): Criminal Justice System Race Unit, The Home Office; 2007.
  • [98] Institut OotDHdPP. Test Standard Stab and Impact Resistance. Requirements, classifications and test procedures. Deutchland: Vereinigung der Prüfstellen für angriffshemmende Materialien und Konstruktionen (VPAM); 2011.
  • [99] ASTM-D737. Test Method for Air Permeability of Textile Fabrics. West Conshohocken, PA: ASTM International; 2004.
  • [100] ASTM-D5470. Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials. West Conshohocken, PA: ASTM International; 2017.
  • [101] ISO-811:2018(en). Textiles - Determination of resistance to water penetration - Hydrostatic pressure test. International Organization for Standardization; 2018.
  • [102] ASTM-D1388. Standard Test Method for Stiffness of Fabrics. West Conshohocken, PA: ASTM International; 2018.
  • [103] ISO-13998:2003(en). Protective clothing-Aprons, trousers and vests protecting against cuts and stabs by hand knives. International Organization for Standardization; 2003.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8712c1e6-f8e6-4cb0-844f-8b12ad430fe2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.