Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 46, nr 1 | 181--190
Tytuł artykułu

A fixed point theorem in generalized metric spaces

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A generalized metric space has been defined by Branciari as a metric space in which the triangle inequality is replaced by a more general inequality. Subsequently, some classical metric fixed point theorems have been transferred to such a space. In this paper, we continue in this direction and prove a version of Fisher’s fixed point theorem in generalized metric spaces.
Wydawca

Rocznik
Strony
181--190
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
  • Department of Mathematics and Computer Science, Faculty of Natural Sciences, University of Gjirokastra, Albania, gjonileta@yahoo.pl
autor
  • Department of Mathematics and Computer Science, Faculty of Natural Sciences, University of Gjirokastra, Albania, kristaqkikina@yahoo.com
Bibliografia
  • [1] A. Azam, M. Arshad, Kannan fixed point theorem on generalized metric spaces, J. Nonlinear Sci. Appl. 1 (2008), 45–48.
  • [2] R. M. T. Bianchini, Su un problema di S. Reich riguardante la teoria dei punti fissi, Boll. Un. Mat. Ital. 5 (1972), 103–108.
  • [3] A. Branciari, A fixed point theorem of Banach-Caccippoli type on a class of generalized metric spaces, Publ. Math. Debrecen 57 (2000), 31–37.
  • [4] P. Das, A fixed point theorem on a class of generalized metric spaces, Korean J. Math. Sciences 1 (2002), 29–33.
  • [5] P. Das, L. K. Dey, A fixed point theorem in a generalized metric space, Soochow J. Math. 33 (2007), 33–39.
  • [6] B. Fisher, Related fixed point on two metric spaces, Math. Sem. Notes, Kobe Univ. 10 (1982), 17–26.
  • [7] R. Kannan, Some results on fixed points II, Amer. Math. Monthly 76 (1969), 405–408.
  • [8] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 256–290.
  • [9] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971), 121–124.
  • [10] I. R. Sarma, J. M. Rao, S. S. Rao, Contractions over generalized metric spaces, J. Nonlinear Sci. Appl. 2 (2009), 108–182.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-86a010e7-6a11-4f2e-bda2-149f861ba40b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.