Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 3 | art. no. e166, 2023
Tytuł artykułu

The effect of pulsed electric current on the structural and mechanical behavior of 6016 aluminium alloy in different states of hardening

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents the effect of high current pulses on the structural and mechanical behavior of the 6016 aluminium alloy in three different states of hardening: naturally aged, super saturated, and annealed. The 6016 aluminium alloy was used for the first time in terms of electrically-assisted forming. The influence of the application of different current parameters on the material behavior was conducted. The study of electrically-assisted tensile tests showed that the application of current pulses results in a distinct response of the material, depending on the hardening state. Although in a hardened state, the mechanical properties and plasticity are deteriorated, in the solution treated state, they are improved. For the changes of the material properties is responsible the interaction of the flowing current with the precipitates and the aging process. The new parameters were proposed to describe the distinctions in the material properties between the different states of hardening of the aluminium alloy during the electrically-assisted tension. The material examination was conducted using light and scanning electron microscopy, using also electron backscattered diffraction methods. The application of, for example, the grain orientation spread parameter demonstrated the presence of recrystallized grains, in electrically-assisted specimens.
Wydawca

Rocznik
Strony
art. no. e166, 2023
Opis fizyczny
Bibliogr. 30 poz., fot., rys., wykr.
Twórcy
  • Department of Metal Forming, Welding and Metrology, Wrocław University of Science and Technology, 7-9 Ignacego Łukasiewicza Street, 50-371 Wrocław, Poland, daniel.dobras@pwr.edu.pl
  • Department of Metal Forming, Welding and Metrology, Wrocław University of Science and Technology, 7-9 Ignacego Łukasiewicza Street, 50-371 Wrocław, Poland
  • Department of Metal Forming, Welding and Metrology, Wrocław University of Science and Technology, 7-9 Ignacego Łukasiewicza Street, 50-371 Wrocław, Poland
Bibliografia
  • 1. Han J, Paidar M, Vignesh RV, Mehta KP, Heidarzadeh A, Ojo OO. Effect of shoulder features during friction spot extrusion welding of 2024–T3 to 6061–T6 aluminium alloys. Arch Civ Mech Eng. 2020. https://doi.org/10.1007/s43452-020-00086-2.
  • 2. Kuwabara T, Mori T, Asano M, Hakoyama T, Barlat F. Material modeling of 6016-O and 6016–T4 aluminum alloy sheets and application to hole expansion forming simulation. Int J Plast. 2017. https://doi.org/10.1016/j.ijplas.2016.10.002.
  • 3. Mohamed MS, Foster AD, Lin J, Balint DS, Dean TA. Inves- tigation of deformation and failure features in hot stamping of AA6082: experimentation and modelling. Int J Mach Tools Manuf. 2012. https://doi.org/10.1016/j.ijmachtools.2011.07.005.
  • 4. Liu Y, Zhu Z, Wang Z, Zhu B, Wang Y, Zhang Y. Formability and lubrication of a B-pillar in hot stamping with 6061 and 7075 aluminum alloy sheets. Procedia Eng. 2017. https://doi.org/10. 1016/j.proeng.2017.10.819.
  • 5. Nguyen-Tran HD, Oh HS, Hong ST, Han HN, Cao J, Ahn SH, Chun DM. A review of electrically-assisted manufacturing. Int J Precis Eng Manuf Green Technol. 2015;2:365–76. https://doi.org/ 10.1007/s40684-015-0045-4.
  • 6. Conrad H. Electroplasticity in metals and ceramics. Mater Sci Eng A. 2000;287:276–87. https:// doi. org/ 10. 1016/ s0921- 5093(00)00786-3.
  • 7. Molotskii M, Fleurov V. Magnetic effects in electroplasticity of metals. Phys Rev B. 1995;52:15829–34. https://doi.org/10.1103/ PhysRevB.52.15829.
  • 8. Ruszkiewicz BJ, Mears L, Roth JT. Investigation of heterogene- ous joule heating as the explanation for the transient electro- plastic stress drop in pulsed tension of 7075–T6 Aluminum. J Manuf Sci Eng Trans ASME. 2018;140:1–11. https://doi.org/ 10.1115/1.4040349.
  • 9. J.T. Roth, I. Loker, D. Mauck, M. Warner, S.F. Golovashchenko, A. Krause, Enhanced formability of 5754 aluminum sheet metal using electric pulsing, in: Trans. North Am. Manuf. Res. Inst. SME, 2008.
  • 10. Hong ST, Jeong YH, Chowdhury MN, Chun DM, Kim MJ, Han HN. Feasibility of electrically assisted progressive forging of aluminum 6061–T6 alloy CIRP. Ann Manuf Technol. 2015;64:277–80. https://doi.org/10.1016/j.cirp.2015.04.084.
  • 11. Xu Z, Tang G, Tian S, Ding F, Tian H. Research of electroplastic rolling of AZ31 Mg alloy strip. J Mater Process Technol. 2007;182:128–33. https://doi.org/10.1016/j.jmatprotec.2006.07. 019.
  • 12. Tang G, Zhang J, Zheng M, Zhang J, Fang W, Li Q. Experimen- tal study of electroplastic effect on stainless steel wire 304L. Mater Sci Eng A. 2000;281:263–7. https:// doi. org/ 10. 1016/ s0921-5093(99)00708-x.
  • 13. Simonetto E, Bruschi S, Ghiotti A. Electroplastic effect on AA1050 plastic flow behavior in H24 tempered and fully annealed conditions. Procedia Manuf. 2019;34:83–9. https:// doi.org/10.1016/j.promfg.2019.06.124.
  • 14. Salandro WA, Jones JJ, McNeal TA, Roth JT, Hong ST, Smith MT. Formability of Al 5xxx sheet metals using pulsed current for various heat treatments. J Manuf Sci Eng Trans ASME. 2010;132:1–11. https://doi.org/10.1115/1.4002185.
  • 15. Kim MJ, Lee MG, Hariharan K, Hong ST, Choi IS, Kim D, Oh KH, Han HN. Electric current-assisted deformation behavior of Al-Mg-Si alloy under uniaxial tension. Int J Plast. 2017. https:// doi.org/10.1016/j.ijplas.2016.09.010.
  • 16. Dobras D, Bruschi S, Simonetto E, Rutkowska-gorczyca M, Ghiotti A. The effect of direct electric current on the plastic behavior of aa7075 aluminum alloy in different states of hard- ening. Materials. 2021;14:1–14. https://doi.org/10.3390/ma140 10073.
  • 17. Camberg AA, Bohner F, Tölle J, Schneidt A, Meiners S, Tröster T. Formability enhancement of en AW-5182 H18 aluminum alloy sheet metal parts in a flash forming process: testing, cali- bration and evaluation of fracture models. Mater Sci Eng. 2018. https://doi.org/10.1088/1757-899X/418/1/012018.
  • 18. Abolhasani A, Zarei-Hanzaki A, Abedi HR, Rokni MR. The room temperature mechanical properties of hot rolled 7075 aluminum alloy. Mater Des. 2012;34:631–6. https://doi.org/10. 1016/j.matdes.2011.05.019.
  • 19. Ravi C, Wolverton C. First-principles study of crystal struc- ture and stability of Al-Mg-Si-(Cu) precipitates. Acta Mater. 2004;52:4213–27. https:// doi. org/ 10. 1016/j. actam at. 2004. 05. 037.
  • 20. Helbert AL, Wang W, Brisset F, Baudin T, Penelle R. In situ EBSD investigation of recrystallization in a partially annealed and cold-rolled aluminum alloy of commercial purity. Adv Eng Mater. 2012;14:39–44. https://doi.org/10.1002/adem.201100165.
  • 21. Jeong HJ, Kim MJ, Park JW, Yim CD, Kim JJ, Kwon OD, Madakashira PP, Han HN. Effect of pulsed electric current on dissolution of Mg17Al12 phases in as-extruded AZ91 magne- sium alloy. Mater Sci Eng A. 2017;684:668–76. https://doi.org/ 10.1016/j.msea.2016.12.103.
  • 22. Wright SI, Nowell MM, Field DP. A review of strain analy- sis using electron backscatter diffraction. Microsc Microanal. 2011;17:316–29. https://doi.org/10.1017/S1431927611000055.
  • 23. Alvi MH, Cheong S, Weiland H, Rollett AD. Recrystallization and texture development in hot rolled 1050 aluminum. Mater Sci Forum. 2004;467:357–62. https://doi.org/10.4028/www.scientific. net/msf.467-470.357.
  • 24. Fan R, Magargee J, Hu P, Cao J. Influence of grain size and grain boundaries on the thermal and mechanical behavior of 70/30 brass under electrically-assisted deformation. Mater Sci Eng A. 2013;574:218–25. https://doi.org/10.1016/j.msea.2013.02.066.
  • 25. Fu S, Liu H, Qi N, Wang B, Jiang Y, Chen Z, Hu T, Yi D. On the electrostatic potential assisted nucleation and growth of precipitates in Al-Cu alloy. Scr Mater. 2018;150:13–7. https:// doi.org/10.1016/j.scriptamat.2018.02.017.
  • 26. Zhao K, Fan R, Wang L. The effect of electric current and strain rate on serrated flow of sheet aluminum alloy 5754. J Mater Eng Perform. 2016;25:781–9. https:// doi. org/ 10. 1007/ s11665-016-1913-y.
  • 27. Bao W, Chu X, Lin S, Gao J. Electro-plastic effect on tensile deformation behaviour and microstructural mechanism of AZ31B alloy. Mater Sci Technol. 2017;33:836–45. https:// doi. org/ 10. 1080/02670836.2016.1242272.
  • 28. Lv J, Zheng JH, Yardley VA, Shi Z, Lin J. A review of micro- structural evolution and modelling of aluminium alloys under hot forming conditions. Metals. 2020;10:1–33. https:// doi. org/ 10. 3390/met10111516.
  • 29. Li X, Turner J, Bustillo K, Minor AM. In situ transmission elec- tron microscopy investigation of electroplasticity in single crystal nickel. Acta Mater. 2022;223:117461. https://doi.org/10.1016/j. actamat.2021.117461.
  • 30. Kang W, Beniam I, Qidwai SM. In situ electron microscopy stud- ies of electromechanical behavior in metals at the nanoscale using a novel microdevice-based system. Rev Sci Instrum. 2016. https:// doi.org/10.1063/1.4961663.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-867641cd-3d0c-428a-89c8-0ea1e72936aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.