Czasopismo
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Algorithms applied in autonomous vehicle systems
Języki publikacji
Abstrakty
Wiele światowych ośrodków badawczych związanych z wytwarzaniem pojazdów lądowych, zwłaszcza przeznaczonych do transportu i komunikacji w ruchu miejskim, nadal pracuje nad opracowaniem pojazdu wyposażonego w systemy nie wymagające udziału człowieka w procesie kierowania pojazdem. Celami, do których się dąży, jest zapewnienie maksimum bezpieczeństwa (minimalizacja wypadków z udziałem człowieka) oraz optymalizacja kosztów transportu (eliminacja kierowcy z pojazdu, optymalny wybór trasy). W artykule, będącym wynikiem szeroko prowadzonych prac studialnych w OBRUM sp. z o.o., omówiono syntetycznie drogi rozwoju pojazdów autonomicznych oraz kluczowe algorytmy pojazdów autonomicznych opisane szczegółowo w cytowanej - przywołanej literaturze. Przedstawione wyniki stanowią punkt wyjścia do dalszych prac realizowanych w Ośrodku nad pojazdem autonomicznym.
Many research centres in the world that deal with the problems of the manufacture of land vehicles, especially those intended for transport and communication in urban traffic, are still working on the development of a vehicle equipped with systems that do not require human participation in the process of driving a vehicle. The goals to be pursued are to ensure maximum safety (minimize accidents involving people) and to optimize transport costs (eliminating the driver from the vehicle, optimal route selection). This article, which is the result of broad studies conducted at OBRUM, discusses the development paths of autonomous vehicles and key algorithms of autonomous vehicles described in detail in the literature cited. The presented results constitute a starting point for further work on an autonomous vehicle to be carried out at OBRUM.
Czasopismo
Rocznik
Tom
Strony
37--57
Opis fizyczny
Bibliogr. 138 poz., tab.
Twórcy
autor
- Ośrodek Badawczo-Rozwojowy Urządzeń Mechanicznych "OBRUM" sp. z o.o., Gliwice
Bibliografia
- [1] Ziomek O.: Volkswagen będzie wypożyczał samochody elektryczne na minuty, zacznie w 2019 roku. Portal DobreProgramy, 2018. https://www.dobreprogramy.pl/Volkswagen-bedzie-wypozyczac-samochody-elektryczne-na-minuty-zacznie-w-2019-roku,News,89124.html [Retrieved: 20.09.2018].
- [2] National Research Council USA: Technology Development for Army Unmanned Ground Vehicles. Washington, 2003.
- [3] Kardasz P., Lyubov O. Kardasz E.: Autonomiczne pojazdy. Biuletyn naukowy Warszawskiej Wyższej Szkoły Informatyki Stosowanej. Informatyka (7). 2017. ISSN: 2082-9892.
- [4] Berrada J.: Modeling Transportation Systems involving Autonomous Vehicles: A State of the Art. Elsevier, 2017.
- [5] Engineering.com: The Road to Driverless Cars: 1925-2025. https://www.engineering.com/DesignerEdge/DesignerEdgeArticles/ArticleID/12665/The-Road-to-Driverless-Cars-1925--2025.aspx [Retrieved: 28.08.2018].
- [6] Felton R.: The Man Who Tested The First Driverless Car in 1925 Had A Bizarre Feud With Harry Houdini. https://jalopnik.com/the-man-who-tested-the-first-driverless-car-in-1925-had-1792312207 [Retrieved: 31.08.2018].
- [7] GM Heritage Center: Self-Driving Cars, in 1956? https://www.gmheritagecenter.com/featured/Autonomous_Vehicles.html [Retrieved: 28.08.2018].
- [8] CyberneticZoo.com: 1960 – Stanford Cart. http://cyberneticzoo.com/cyberneticanimals/1960-stanford-cart-american/ [Retrieved: 28.08.2018].
- [9] Gupta N., S. N. Dana: On the complexity of blocks-world planning. Artificial Intelligence (56). Elsevier, 1992. http://www.cs.umd.edu/~nau/papers/gupta1992complexity.pdf [Retrieved: 28.08.2018].
- [10] Gupta A., Efros A., M. Hebert: Blocks World Revisited: Understanding Using Qualitive Geometry and Mechanics. European Conference on Computer Vision. 2010. http://www.cs.cmu.edu/~abhinavg/blocksworld/blocksworld.pdf [Retrieved: 28.08.2018].
- [11] Kuipers B. J.: An Hyphothesis-Driven Recognition System for the Blocks World. MIT, 1974.
- [12] Dickmanns E. D.: Vehicles Capable of Dynamic Vision. Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence. Nagoya, 1997.
- [13] Dickmanns E. D.: Expectation-Based, Multi-Focal, Saccadic (EMS) Vision for Dynamic Scene Understanding. Control Engineering Practise (10), nr 8. Elsevier, 2012.
- [14] Gregor R., Lutzeler M., Pellkofer M. Siedersberg K.-H, Dickmanns E. D.: EMS-Vision: A Receptual System for Autonomous Vehicles. Transactions on Intelligent Transportation Systems (3), nr 1. IEEE, 2002.
- [15] Hofmann U., Rieder A., Dickmanns E. D.: EMS-Vision: Application to Hybrid Adaptive Cruise Control. Proceedings of the IEEE Inteligent Vehicles Symposium 2000. IEEE, 2000. ISBN: 0-7803-6363-9.
- [16] Launchbury J.: A Darpa Perspective on Artificial Intelligence. 2017. https://www.youtube.com/watch?v=-O01G3tSYpU [Retrieved: 29.08.2018].
- [17] Markoff J.: Google Cars Drive Themselves, in Traffic. 2010. https://www.nytimes.com/2010/10/10/science/10google.html [Retrieved: 29.08.2018].
- [18] Russel S.: DARPA Grand Challenge Winner, Popular Mechanics. 2006. https://www.popularmechanics.com/technology/robots/a393/2169012/ [Retrieved: 29.08.2018].
- [19] Cargegie Mellon University: Carnegie Mellon’s Tartan Racing Wins $2M DARPA Urban Challenge. https://www.cmu.edu/homepage/practical/2007/fall/victory.shtml [Retrieved: 30.08.2018].
- [20] Cargegie Mellon University: Tartan Racing Technology. http://www.cs.cmu.edu/~tartanrace/tech.html [Retrieved: 30.08.2018].
- [21] Tesla Motors: Enhancing Safety and Convenience with Summon. 2016. https://www.tesla.com/blog/enhancing-safety-and-convenience-summon [Retrieved: 30.08.2018].
- [22] NHTS: Preliminary Statement of Policy Concerning Automated Vehicles. 2017. https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety [Retrieved: 28.08.2018].
- [23] Zhang B.: ELON MUSK: In 2 years your Tesla will be able to drive from New York to LA and find you. 2016. https://finance.yahoo.com/news/elon-musk-two-years-car-202858960.html [Retrieved: 30.08.2018].
- [24] Cunningham W.: 2013 Ford Fusion review. 2013. https://www.cnet.com/roadshow/reviews/2013-ford-fusion-review/ [Retrieved: 30.08.2018].
- [25] English A.: New Car Tech: 2014 Mercedes-Benz S-Class. 2013. https://www.roadandtrack.com/new-cars/news/a3689/new-car-tech-2014-mercedes-benz-s-class/.
- [26] Tregaskis S.: The first generation of self-driving cars – in pictures. 2014. https://www.theguardian.com/technology/gallery/2014/may/29/first-generation-self-driving-cars-google-in-pictures.
- [27] Hirz M., Walzel B.: Sensor and object recognition technologies for self-driving cars. Computer-Aided Design and Application. 2018.
- [28] Rasmussen C.: Grouping dominant orientations or Ill-structured road following. International Conference on Computer Vision and Pattern Recognition. IEEE, 2004.
- [29] Miksik O.: Rapid Vanishing Point Estimation for General Road Detection. Proceedings – IEEE International Conference on Robotics and Automation. IEEE, 2012.
- [30] Moon Y. Y., Geem Z. W., Han G. T.: Vanishing point detection for self-driving car using harmony search algorithms. Swarm and Evolutionary Computation. 2018.
- [31] Pohlen T., Hermans A., Mathias M., Leibe B.: Full Resolution Residual Networks. 2017. http://openaccess.thecvf.com/content_cvpr_2017/papers/Pohlen_Full-Resolution_Residual_Networks_CVPR_2017_paper.pdf [Retrieved: 3.09.2018].
- [32] Petrovskaya A., Thrun S.: Model based vehicle detection and tracking for autonomous urban driving. Autonomous Robots (26). Springer, 2009.
- [33] Trempl M., Arjona-Medina J., Unterthiner T.: Speeding up Semantic Segmentation for Autonomous Driving. 2016. https://openreview.net/pdf?id=S1uHiFyyg [Retrieved: 3.09.2018].
- [34] Mukhometzianov R., Wang Y.: Review. Machine learning techniques for traffic sign detection. 2017. https://arxiv.org/ftp/arxiv/papers/1712/1712.04391.pdf [Retrieved: 4.09.2018].
- [35] Nvidia: Nvidia Drive. https://www.nvidia.com/en-us/self-driving-cars/drive-platform/ [Retrieved: 3.09.2018].
- [36] Hruska J.: Tesla Working with AMD on Self-Driving Car Processor. https://www.extremetech.com/extreme/256171-tesla-working-amd-self-driving-car [Retrieved: 3.09.2018].
- [37] Zhang H., Qi X., Shen X., Jia J.: ICNet for Real-Time Semantic Segmentation on High-Resolution Images. 2018. https://arxiv.org/pdf/1704.08545.pdf [Retrieved: 3.09.2018].
- [38] K. Brkić: An overview of traffic sign detection methods. https://pdfs.semanticscholar.org/74a1/336f1fbc8b7bb3b6e159711af1a91336ce22.pdf [Retrieved: 4.09.2018].
- [39] T. Radu, Z. Karel, L. V. Gool: Multi-view traffic sign detection, recognition, and 3D localisation. 2009 Workshop on Applications of Computer Vision (WACV). 2009.
- [40] Sugiharto A., Harjoko A.: Traffic sign detection based on HOG and PHOG using binary SVM and k-NN. 3rd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE). 2016.
- [41] Fleyeh H., Biswas R., Davami E.: Traffic sign detection based on AdaBoost color segmentation and SVM classification. IEEE, 2013.
- [42] Gurel C. S.: Traffic Sign Recognition using multi-class SVM. Perception for Autonomous Robots. 2018.
- [43] Samuele S., Alioscia P., Federico T., Nicola F., Luigi S.: A traffic sign detection pipeline based on interest region extraction. The 2013 International Joint Conference on Neural Networks (IJCNN). 2013.
- [44] Martinez A. Kak A., PCA versus LDA. IEEE Trans. Pattern Analysis and Machine Intelligence (23), nr 2. IEEE, 2001.
- [45] Wang G., Ren G., Wu Z., Zhao Y., JiangL.: A robust, coarse-to-fine traffic sign detection method. The 2013 International Joint Conference on Neural Networks (IJCNN). 2013.
- [46] Shi J., Lin H.-Y.: A vision system for traffic sign detection and recognition. 26th International Symposium on Industrial Electronics (ISIE). IEEE, 2017.
- [47] Fukazawa Y.: Traffic Sign Recognition system on Android devices. 2003. https://www.researchgate.net/publication/311540973_Traffic_Sign_Recognition_system_on_Android_devices [Retrieved: 4.09.2018].
- [48] Jagannathan S., Desappan K., Swami P.: Efficient Object Detection and Classification on Low Power Embedded Systems. International Conference on Consumer Electronics (ICCE). IEEE, 2017.
- [49] Li Z., Dong C., Zheng L., Liu L.: Traffic Signs Detection Based on Haar-Like Features and Adaboost Classifier. Second International Conference on Transportation Information and Safety. 2013.
- [50] Kaplan K., Kurtul C., Akin H. L.:Real-Time Traffic Sign Detection and Classification Method for Intelligent Vehicles. International Conference on Vehicular Electronics and Safety. IEEE, 2012.
- [51] Nguyen K.-D., Le D.-D, Duc D. A.: Efficient Traffic Sign Detection Using Bag of Visual Words and Multi-scales SIFT. International Conference on Neural Information Processing, 2013.
- [52] De Souza A., Fontana C., Mutz F.: Traffic sign detection with VG-RAM weightless neural networks. The 2013 International Joint Conference on Neural Networks (IJCNN). 2013.
- [53] Zhang K., Sheng Y., Wang P.: Automatic recognition of traffic signs in natural scene image based on central projection transformation. http://www.isprs.org/proceedings/XXXVII/congress/3b_pdf/26.pdf [Retrieved: 4.09.2018].
- [54] Shustanov A., Yakimov P.: CNN Design for Real-Time Traffic Sign Recognition. Procedia Engineering (201). ELSEVIER, 2017.
- [55] Wu Y., Liu Y., Li J., Liu H., Hu X.: Traffic sign detection based on convolutional neural networks. The 2013 International Joint Conference on Neural Networks (IJCNN). 2013.
- [56] Zhu Z., Liang D., Zhang S.: Traffic-Sign Detection and Classification in the Wild. https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Traffic-Sign_Detection_and_CVPR_2016_paper.pdf [Retrieved: 4.09.2018].
- [57] Bappy J. H., Roy-Chowdhury K.: CNN based region proposals for efficient object detection. http://intra.ece.ucr.edu/~mbappy/pubs/ICIP_2016.pdf [Retrieved: 4.09.2018].
- [58] Xiong C., Wang C., Ma W., Shan Y.: A traffic sign detection algorithm based on deep convolutional neural network. International Conference on Signal and Image Processing (ICSIP). IEEE, 2016.
- [59] Zuo Z., Yu K., Zhou Q., Wang X., Li T.: Traffic Signs Detection Based on Faster R-CNN. 37th International Conference on Distributed Computing Systems Workshops (ICDCSW). 2017.
- [60] Durrant-Whyte H., Bailey T.: Simultaneous localisation and mapping (slam): Part I The essential algorithms. Robotics and Automation Magazine. 2006.
- [61] Smith R., Cheeseman P.: On the representation and estimation of spatial uncertainty. Int. Journal of Robotics Research. 1987.
- [62] Montemerlo M., Thrun S., Koller D., Wegbreit B.: FastSLAM: A factored solution to the simultaneous localization and mapping problem. AAAI National Conference on Artificial Intelligence, 2002.
- [63] Doucet A., De Freitas N., Murphy K., Russel S.: Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. Uncertainty in Artificial Intelligence Proceedings. 2000.
- [64] Montemerlo M., Thrun S.: FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges. Proceedings of IJCAI. 2003.
- [65] Ebdres F., Hess J., Engelhard N.: An evaluation of the RGB-D SLAM system. International Conference on Robotics and Automation. IEEE, 2012.
- [66] Mur-Artal E., Tardos J.D.: ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras. Transactions on Robotics PP (99). IEEE, 2016.
- [67] Rublee E., Rabaud V., Konolige K., Bradski G.: ORB: an efficient alternative to SIFT or SURF. http://www.willowgarage.com/sites/default/files/orb_final.pdf, [Retrieved: 5.09.2018].
- [68] Ball D., Heath S., Wiles J.: OpenRatSLAM: an open source brain-based SLAM system. Automonous Robots. 2013.
- [69] Engel J., Shöps T., Cremers D.: LSD-SLAM: Large-Scale Direct Monocular SLAM. Computer Vision. ECCV, 2014.
- [70] Petridis V., Zikos N.: L-SLAM: „Reduced dimensionality FastSLAM algorithms. The 2010 International Joint Conference on Neutral Networks (IJCNN). 2010.
- [71] Yang S., Shrerer S. A., Zell A.: Visual SLAM for autonomous MAVs with dual cameras. International Conference on Robotics and Automation. IEEE, 2014.
- [72] Levinson J., Askeland J., Becker J.: Towards Fully Autonomous Driving: Systems and Algorithms. Intelligent Vehicles Symposium (IV). IEEE, 2011.
- [73] Teichman A., Thrun S.: Practical object recognition in autonomous driving and beyond. Advanced Robotics and its Social Impacts. IEEE, 2012.
- [74] Ors A. O.: Radar, camera, LiDAR and V2X for autonomous cars. 2017. https://blog.nxp.com/automotive/radar-camera-and-lidar-for-autonomous-cars [Retrieved: 03.09.2018].
- [75] Rainer M.: Indoor positioning technologies. ETH Zürich, 2012. https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/54888/eth-5659-01.pdf [Retrieved: 27-08-2018]
- [76] Thrun S., Montemerlo M.: The GraphSLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures. The International Journal of Robotics Research. 2006.
- [77] Colleens T., Colleens J. J., Ryan C.: Occupancy grid mapping: An empirical evaluation. Control & Automation. IEEE, 2007.
- [78] Shuster F., Keller C., Rapp M. Haueis M.: Curio C.: Landmark based radar slam using graph optimization. Intelligent Transportation Systems (ITSC). IEEE, 2016.
- [79] Schoen M., Horn M., Hahn M., Dickmann J.: Real-Time Radar SLAM. FAS, 2017. https://www.uni-das.de/images/pdf/veroeffentlichungen/2017/01.pdf [Retrieved: 6.09.2018].
- [80] Thrun S., Burgard W., Fox D.: A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. International Conference on Robotics and Automation. IEEE, 2000.
- [81] Smets P., Kennes R.: The transferable belief model. Artificial Inteligence (66), No. 2. Elsevier, 1994.
- [82] Trehard C., Pollard E., Bradai B., Nashashibi F.: Credibilist SLAM Performances with Different Laser Set-ups. 13th Interational Conference on Control, Automation, Robotics and Vision (ICARCV). 2014.
- [83] Besl P. J., McKay H. D.: A method for registration of 3-D shapes,. IEEE PAMI (14), nr 2. IEEE, 1992.
- [84] Mendes E., Koch P., Lacroix S.: ICP-based pose-graph SLAM. International Symposium on Safety, Security, and Rescue Robotics (SSRR). IEEE, 2016.
- [85] Datta A.: Google releases SLAM tool Cartographer to open source community. Geospatial World, 2016. https://www.geospatialworld.net/blogs/google-open-sources-slam-tool-cartographer/ [Retrieved: 10.09.2018].
- [86] Nuchter A., Bleier M., Schauer J., Janotta P.: Impoving Google’s Cartographer 3D Mapping by Continuous-Time SLAM. https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W3/543/2017/isprs-archives-XLII-2-W3-543-2017.pdf [Retrieved: 10.09.2018].
- [87] Zhang J., Singh S.: LOAM: Lidar Odometry and Mapping in Real-time. Conference: Robotics: Science and Systems Conference. 2014.
- [88] Rodriguez-Canosa R. G., Thomas S., del Cerro J.: A Real-Time Method to Detect and Track Moving Objects (DATMO) from Unmanned Aerial Vehicles (UAVs) Using a Single Camera. Remote Sensing. 2012.
- [89] Vivet D., Checchin P., Chapuis R.: A Mobile Ground-based Radar Sensor of Detection And Tracking of Moving Objects. EURASIP Journal on Advances in Signal Processing 2012 (1). 2012.
- [90] Magnier V., Gruyer D., Godelle J.: Automotive LIDAR objects Detection and Classification Algorithm Using the Belief Theory. Intelligent Vehicles Symposium. IEEE, 2017.
- [91] Vu T.-D.:Vehicle perception: Localization, mapping with detection, classification and tracking of moving objects. Ph.D. dissertation. Institut National Polytechnique de Grenoble (INPG), 2009.
- [92] Pancham A., Tlale N., Bright G.: Literature Review of SLAM and DATMO. 2011. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.886.7941&rep=rep1&type=pdf [Retrieved: 10.09.2018].
- [93] Wang C.-C., Thorpe C., Thrun S.: Online Simultaneous Localization and Mapping with Detection and Tracking of Moving Objects: Theory and Results from a Ground Vehicle in Crowded Urban Areas. International Conference on Robotics and Automation (ICRA). IEEE, 2003.
- [94] Kim C., Li F., Ciptadi A., Rehg J. M.: Multiple Hypothesis Tracing Revisited. International Conference on Computer Vision (ICCV). IEEE, 2015.
- [95] Watson G. A., Blair W. D.: IMM Algorithm for Tracking Targets that Maneuver through Coordinated Turns. Proceedings of SPIE. 1992.
- [96] Hähnel D., Schulz D., Burgard W.: Mobile robot mapping in populated environments. http://ais.informatik.uni-freiburg.de/publications/papers/haehnel-populated.pdf [Retrieved: 11.09.2018].
- [97] Rezatofighi S. H., Milan A., Zhang Z.: Joint Probabilistic Data Association Revisited. https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Rezatofighi_ Joint_Probabilistic_Data_ICCV_2015_paper.pdf [Retrieved: 11.09.2018].
- [98] Montesano L., Minguez J., Montano L.: Modeling the static and the dynamic parts of the environment to improve sensor-based navigation. International Conference on Robotics and Automation (ICRA). IEEE, 2005.
- [99] Cover T. M.: Estimation by the Nearest Neighbor Rule. 1968. https://pdfs.semanticscholar.org/32ba/0664f51c88960fc9b783a9c0adb6b0546e73.pdf [Retrieved: 11.09.2018].
- [100] Solà J.: Towards Visual Localization, Mapping and Moving Objects Tracking by a Mobile Robot: a Geometric and Probabilistic Approach. 2007. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.125.7858&rep=rep1&type=pdf [Retrieved: 11.09.2018].
- [101] Vu T. -D., Burlet J., Aycard O.: Grid-based localization and local mapping with moving object detection and tracking. Information Fusion 12, 2011.
- [102] Na K., Byun J., Roh M., Seo B.: RoadPlot-DATMO: Moving object tracking and track fusion system using multiple sensors. 2015 International Conference on Connected Vehicles and Expo (ICCVE), 2015.
- [103] Botha F. J.: Data Fusion of Radar and Stereo Vision for Detection and Tracking of Moving Objects. PRASA-RobMech International Conference. 2016.
- [104] Holstein T., Crnkovic G. D., Pelliccione P.: Ethical and Social Aspects of Self-Driving Cars. ARXIV. 2018.
- [105] Holstein T.: The Misconception of Ethical Dilemmas in Self-Driving Cars. Proceedings. 2017.
- [106] Goodall H. J.: Ethical Decision Making During Automated Vehicle Crashes. Transportation Research Record Journal of the Transportation Research Board. 2014.
- [107] Bellman R.: On a routing problem. 1956. http://www.dtic.mil/dtic/tr/fulltext/u2/606258.pdf [Retrieved: 19.09.2018].
- [108] Ford L. R.: Network Flow Theory. 1958. http://www.dtic.mil/dtic/tr/fulltext/u2/422842.pdf [Retrieved: 19.09.2018]
- [109] Dijkstra E. W.: A note on two problems in connexion with graphs. 1959. http://www-m3.ma.tum.de/foswiki/pub/MN0506/WebHome/dijkstra.pdf [Retrieved: 19.09.2018]
- [110] Hart P. E., Nilsson N. J., Raphael B.: A Formal Basis for the Heuristic Determination of Minimum Cost Paths. Transactions on Systems Science and Cybernetics (4). IEEE, 1968.
- [111] Stentz A., Mellon I. C.: Optimal and efficient path planning for unknown and dynamic environments. International Journal of Robotics and Automation. 1993.
- [112] Dolgov D., Thrun S., Montemerlo M.: Practical Search Techniques in Path Planning for Autonomous Driving. 2008. https://ai.stanford.edu/~ddolgov/papers/dolgov_gpp_stair08.pdf [Retrieved: 19.09.2018].
- [113] Chu K., Kim j., Jo K., Sunwoo M.: Real-time path planning of autonomous vehicles for unstructured road navigation. International Journal of Automotive Technology. 2015.
- [114] Wang L., Zhang Y, Wang J.: Map-Based Localization Method for Autonomous Vehicles Using 3D-LIDAR. The 25th International Symposium on Dynamics of Vehicles on Roads and Tracks (IAVSD). 2017.
- [115] Xiao Z., Jiang K., Xie S.: Monocular Vehicle Self-localization method based on Compact Semantic Map. 2018.
- [116] Schwarting W., Mora J. A., Rus D.: Planning and Decision-Making for Autonomous Vehicles. Annual Reviews. 2018.
- [117] Hoffmann G., Tomlin C. J., Montemerlo M., Thrun S.: Autonomous Automobile Trajectory Tracking for Off-Road Driving: Controller Design, Experimental Validation and Racing. Proceedings of the American Control Conference. IEEE, 2007.
- [118] Keviczky T., Falcone O., Borrelli F.: Predictive Control Approach to Autonomous Vehicle Steering. Transactions on Control Systems Technology. IEEE, 2007.
- [119] Kapania N. R., Gerdes J. C.: Design of a feedback-feedforward steering controller for accurate path tracking and stability at the limits of handling. 2015. https://www.tandfonline.com/doi/abs/10.1080/00423114.2015.1055279 [Retrieved: 11.09.2018].
- [120] Sallab A. E., Abdou M., Perot E., Yogamani S.: End-to-End Deep Reinforcement Learning for Lane Keeping Assist. 2016. https://openreview.net/pdf?id=ByjDCQgke [Retrieved: 12.09.2018].
- [121] Aoki S., Rajkumar E.: Dynamic Intersections and Self-Driving Vehicles. 2018. https://www.researchgate.net/publication/326145557_Dynamic_Intersections_and_Self-Driving_Vehicles [Retrieved: 12.09.2018].
- [122] Krishnan S., Govind A. R., Ramakrishnan R.: A Look at Motion Planning for Avs at an Intersection. 2018. https://arxiv.org/pdf/1806.07834.pdf [Retrieved: 12.09.2018].
- [123] Isele D., Rahimi R., Cosgun A.: Navigation Occluded Intersections with Autonomous Vehicles using Deep Reinforcement Learning. 2018. https://arxiv.org/pdf/1705.01196.pdf [Retrieved: 12.09.2018].
- [124] Caltagirone L., Bellone M., Svensson M.: LIDAR-based driving path generation using fully convolutional neural networks. 2017. https://www.researchgate.net/publication/315666984_LIDAR-based_Driving_Path_Generation_Using_Fully_Convolutional_Neural_Networks [Retrieved: 12.09.2018].
- [125] The KITTI Vision Benchmark Suite: Semantic and Instance Segmentation Evaluation. http://www.cvlibs.net/datasets/kitti/ [Retrieved: 12.09.2018].
- [126] Barnes D., Maddern W., Posner W.: Find your own way: weakly-supervised segmentation of path proposals for urban autonomy. International Conference on Robotics and Automation (ICRA). IEEE, 2017.
- [127] Olsson M.: Behavior Trees for decision-making in Autonomous Driving. 2016. http://www.diva-portal.org/smash/get/diva2:907048/FULLTEXT01.pdf [Retrieved: 13.09.2018].
- [128] Hu M., Liao Y., Wang W.: Decision Tree-Based Maneuver Prediction for Driver Rear-End Risk-Avoidance Behaviors in Cut-In Scenarios. Journal of Advanced Transportation. 2017.
- [129] Claussmann L., Carvalho A., Schildbach G.: A path planner for autonomous driving on highways using a human mimicry approach with binary decision diagrams. European Control Conference. 2015.
- [130] Ulbrich S., Mauerer M.: Probabilistic Online POMDP Decision Making for Lane Changes in Fully Automated Driving. 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013). IEEE, 2013.
- [131] Zhang J., Liao Y., Wang S., Han J.: Study on Driving Decision-Making Mechanism of Autonomous Vehicle Based on an Optimized Support Vector Machine Regression. Applied Sciences. 2017.
- [132] Mueller M. A.: Reinforcement Learning: MDP Applied to Autonomous Navigation. 2017. http://aircconline.com/mlaij/V4N4/4417mlaij01.pdf [Retrieved: 13.09.2018].
- [133] Legrand N.: Deep Reinforcement Learning for Autonomous Vehicle Control among Human Drivers. 2017. https://ai.vub.ac.be/sites/default/files/thesis_legrand.pdf [Retrieved: 13.09.2018].
- [134] Harris M.: How Google’s Autonomous Car Passed the First U.S. State Self-Driveing Test. IEEE Spectrum. IEEE, 2014. https://spectrum.ieee.org/transportation/advanced-cars/how-googles-autonomous-car-passed-the-first-us-state-selfdriving-test [Retrieved: 12.09.2018].
- [135] Pomerleau D. A.: ALVINN: An Autonomous Land Vehicle in a Neural Network. 1989. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.830.2188&rep=rep1&type=pdf [Retrieved: 12.09.2018].
- [136] Bojarski M., Del Testa D., Dworakowski D.: End to end learning for self-driving cars. https://arxiv.org/abs/1604.07316 [Retrieved: 12.09.2018].
- [137] Hussein A., Gaber M. M., Elyan E.: Imitation Learning: A Survey of Learning Methods. ACM Computer Surveys. 2017.
- [138] Dosovitskiy A, Ros G., Codevilla F.: CARLA: An Open Urban Driving Simulator. 2017. http://proceedings.mlr.press/v78/dosovitskiy17a/dosovitskiy17a.pdf [Retrieved: 12.09.2018].
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-862bcc9a-c90c-4cf6-97f5-0e7b881b5f4c