Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 63, nr 1 | 36--45
Tytuł artykułu

HPDL laser alloying of Al-Si-Cu alloy with Al2O3 powder

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This article presents results of investigation of laser alloyed cast aluminium alloys after standard heat treatment. In general into the aluminium matrix there are fed different types of ceramic particles including aluminium oxide. The purpose of this work was also to determine the laser treatment conditions for surface hardening of the investigation alloys, like laser power, as well the laser scan rate. Design/methodology/approach: The investigations were performed using light and electron microscopy (SEM) for structure determination, using EDS microanalysis it was also possible to determine the chemical composition changes. The morphology and size of the ceramic powder particles was also possible to determine. Findings: Concerning the laser treatment conditions for surface hardening the scan rate as well as the laser power influence was studied. The structure of the surface laser tray changes in a way, that there are very high roughness of the surface zone and the flatness or geometry changes. Research limitations/implications: The aluminium samples were examined metallographically using optical microscope with different image techniques as well as scanning electron microscope. Practical implications: Developing of new technology with appliance of Al alloys, High Power Diode Laser and diverse ceramic powders can be possible to obtain, based in findings from this research project. Some other investigation should be performed in the future, but the knowledge found in this research concerning the proper process parameters for each type of alloy shows an interesting investigation direction. Originality/value: The combination of metallographic investigation, including electron microscope investigation and High Power Diode Laser (HPDL) treatment parameters makes the investigation very attractive especially for automobile industry, and transportation where parts manufactured of aluminium alloys are a very important because of its surface properties.
Wydawca

Rocznik
Strony
36--45
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, krzysztof.labisz@polsl.pl
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Department of Welding, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1]A.M. Samuel, J. Gauthier, F.H. Samuel, Microstructural aspects of the dissolution and melting of Al2Cu phase in ai-si alloys during solution heat treatment, Metallurgical and Materials Transactions A 27 (1996) 1785-1798.
  • [2]K. Labisz, T. Tański, D. Janicki, HPDL energy absorption on anodised cast Al-Si-Cu alloys surfaces during remelting, Archives of Foundry Engineering Special 2/2012 (2012) 45-48.
  • [3]T. Tański, K. Labisz, J. Domagała-Dubiel, Laser modification of the surface layer of light alloys, Proceedings of the Symposium Departments and Institutes Welding, Modern applications of welding technologies, 2012, 296-303 (in Polish).
  • [4]K. Labisz, T. Tański, L.A. Dobrzański, HPDL laser alloying of heat treated Al-Si-Cu alloy, Journal of Archives of Materials Science and Engineering 54\1 (2012) 13-21.
  • [5]K. Labisz, M. Krupiński, T. Tański, TEM microstructure investigations of aluminium alloys used for laser alloying, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 734-741.
  • [6]T. Tański, K. Labisz, J. Domagała-Dubiel, Laser modification of the surface layer of light alloys, Symposium Departments and Institutes Welding, Modern applications of welding technologies, Bonding 1/19, 2013, 20-22 (in Polish). [7]T. Tański, K. Labisz, Surface treatment influence on properties of the heat treated light cast alloys, Proceedings of the 2nd International Conference on Recent Trends in Structural Materials COMAT, 2012.
  • [8]T. Tański, K. Labisz, W. Pakieła, M. Bonek, The structure of aluminium alloys-dopped silicon, Proceedings of the 18th international, PhD. Students` seminar, Semdok, 2013, 52-55.
  • [9]Klimpel, High power diode laser in welding, Welding review 8, Warsaw, 1999 (in Polish).
  • [10]S. Yahong, H. Satoshi, Y. Masato, U. Hitoshi, T. Hironobu, Fatigue behaviour and fractography of laser-processed hot work tool steel, Science Direct (2004) 128-134.
  • [11]L.J. Yang, Wear coefficient of tungsten carbide against hot-work tool steel disc with two different pin settings, Science Direct (2004) 234-240.
  • [12]K. Labisz, L.A. Dobrzański, R. Maniara, A. Olsen, Microstructure evaluation of the Al-Ti alloy with magnesium addition, Journal of Achievements in Materials and Manufacturing Engineering 47/1 (2011) 75-82.
  • [13]B. Krupińska, Z. Rdzawski, K. Labisz, Crystallisation kinetics of the Zn-Al alloys modified with lanthanum and cerium, Journal of Achievements in Materials and Manufacturing Engineering 46/2 (2011) 154-160.
  • [14]K. Dae-Hwan, H. Seong-Hyeon, K. Byoung-Kee, Fabrication of ultrafine TaC powders by mechanochemical process, Materials Letters (2004) 87-92.
  • [15]J. Okrajni, A. Marek, G. Junak, Description of the deformation process under thermomechanical fatigue, Journal of Achievements in Materials and Manufacturing Engineering 22 (2007) 15-24.
  • [16]B. Kosec, M. Brezigar, G. Kosec, J. Bernetic, M. Bizjak, Heat treatment of cold formed steel forgings for the automotive industry, Journal of Achievements in Materials and Manufacturing Engineering 22 (2007) 87-90.
  • [17]M. Hamedi, Optimizing tensile strength of low-alloy steel joints in upset welding, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 341-344.
  • [18]J. Kusiński, J. Przybyłowicz, S. Kąc, A. Woldan, Structure and properties change in case of laser remelting of surface layers and coatings, Hutnik (1999) 14-20 (in Polish).
  • [19]X. Changqing, J. Yucheng, Y. Guangli, Effect of a single peak overload on physically short fatigue crack retardation in an axle-steel, International Journal of Fatigue 19 (1996) 201-206.
  • [20]S. Rusz, L. Cizek, P. Filipec, Evaluation of fatigue of micro-alloyed 23MnB4 steel, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 223-226.
  • [21] R. Filip, Laser nitriding of the surface layer of Ti6Al4V titanium alloy, Archives of Materials Science and Engineering 30/1 (2009) 25-28.
  • [22] J. Kusiński, Laser Applications in Materials Engineering, Publishing House WN „Akapit”, Cracow, 2000 (in Polish).
  • [23] E. Kennedy, G. Byrne, D.N. Collins, A review of the use of high power diode lasers in surface hardening, Journal of Materials Processing Technology 155-156 (2004) 1855-1860.
  • [24] Lisiecki, A. Klimpel, Diode laser surface modification of Ti6Al4V alloy to improve erosion wear resistance, Archives of Materials Science and Engineering 32/1 (2008) 5-12.
  • [25] Y.S. Tian, C.Z. Chen, D.Y. Wang, Q.H. Huo, T.Q. Lei, laser surface alloying of pure titanium with TiN-B-B-Si-Ni mixed powders, Applied Surface Science 250 (2005) 223-227.
  • [26] E.F. Horst, B.L. Mordike, Magnesium Technology. Metallurgy, Design Data, Application, Springer-Verlag, Heidelberg, 2006.
  • [27] Z. Górny, J. Sobczak, Non-ferrous metals based novel materials in foundry practice, Publishing House ZA-PIS, Cracow, 2005 (in Polish).
  • [28] S. Yingwei, S. Dayong, Ch. Rongshi, H. En-Hou, Corrosion characterization of Mg-8Li alloy in NaCl solution, International Journal Corrosion Science 51/5 (2009) 1087-1094.
  • [29] G. Lili, Z. Chunhong, Z. Milin, H. Xiaomei, S. Nan, The corrosion of a novel Mg-11Li-3Al-0.5RE alloy in alkaline NaCl solution, International Journal of Alloys and Compounds 468/1-2 (2009) 285-289.
  • [30] A.D. Dobrzańska-Danikiewicz, T. Tański, J. Domagała- Dubiel, Unique properties, development perspectives and expected applications of laser treated casting magnesium alloys, Archives of Civil and Mechanical Engineering 12 (2012) 318-326.
  • [31] Y. Issshiki, K. Mizumoto, M. Hashimoto, Synthesis of iron-tungsten alloy on mild steel by Laser Surface Alloying, Thin Solid Films 317 (1998) 468- 70.
  • [32] L.A. Dobrzański, T. Tański, J. Trzaska, Optimization of heat treatment conditions of magnesium cast alloys, Materials Science Forum 638-642 (2010) 1488-1493.
  • [33] T. Tański, L.A. Dobrzański, L. Čížek, Influence of heat treatment on structure and properties of the cast magnesium alloys, Journal of Advanced Materials Research 15-17 (2007) 491-496.
  • [34] M. Bilewicz, J.C. Viana, A.M. Cunha, Non-conventional Injection Moulding of a PP/PC-ABS Blend, Trans Tech Publications Materials Science Forum 514-516 (2006) 858-862.
  • [35] T. Tański, K. Labisz, Electron microscope investigation of PVD coated aluminium alloy surface layer, Proceedings of the XIVth International Conference on Electron Microscopy, Solid State Phenomena 186, 2012, 192-197.
  • [36] M. Bilewicz, J.C. Viana, L.A. Dobrzański, Development of microstructure affected by in-mould manipulation in polymer composites and nanocomposite, Journal of Achievements in Materials and Manufacturing Engineering 31/1 (2008) 71-76.
  • [37] L.A. Dobrzański, M. Król, M. Bilewicz, J.C. Viana, Microstructure and mechanical properties of Polypropylene/Polycarbonate blends, Journal of Achievements in Materials and Manufacturing Engineering 27/1 (2008) 19-22.
  • [38] M. Bilewicz, J.C. Viana, A.M. Cunha, L.A. Dobrzański: Morphology diversity of injection moulded polymer composites, Journal of Achievements in Materials and Manufacturing Engineering 15/1-2 (2006) 159-165.
  • [39] A. Lisiecki, A. Klimpel, Diode laser surface modification of Ti6Al4V alloy to improve erosion wear resistance, Archives of Materials Science and Engineering 32 (2008) 5-12.
  • [40] A. Klimpel, L.A. Dobrzański, D. Janicki, A. Lisiecki, Abrasion resistance of GMA metal cored wires surfaced deposits, Journal of materials processing technology 164/165 (2005) 1056-1061.
  • [41] A. Lisiecki, A. Klimpel, Diode laser gas nitriding of Ti6Al4V alloy, Archives of Materials Science and Engineering 31 (2008) 53-56.
  • [42] A. Lisiecki, Welding of titanium alloy by different types of lasers, Archives of Materials Science and Engineering 58/2 (2012) 209-218.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-85f958e0-af87-42f4-877f-38188978c8a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.