Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2024 | Vol. 72, no. 1 | 287--301
Tytuł artykułu

Prediction of flyrock distance induced by blasting using particle swarm optimization and multiple regression analysis: an engineering perspective

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flyrock is one of the major safety hazards induced by blasting operations. However, few studies were for predicting blasting-induced flyrock distance from the perspective of engineers. The present paper attempts to provide an engineer-friendly equation predicting blasting-induced flyrock distance. Data used in the present study contains s seven blasting parameters including borehole diameter, blasthole length, powder factor, stemming length, maximum charge per delay, burden, and flyrock distance is obtained. Data is inputted into Random Forest for feature selection. The selected features are formulated as two candidate equations, including Multiple Linear Regression (MLR) equation and Multiple Nonlinear Regression (MNR) equation. Those two candidates are respectively referred by Particle Swarm Optimization for searching optimum values for the coefficients of selected features. It is proved that MLR equation has better accuracy. MLR equation is compared with two empirical equations and the MLR equation based on least squares method. It is found that the coefficient of correlation of the proposed MLR equation reaches 0.918, which is the highest compared with the scores of other three equations. The present study utilizes feature selection process to screen inputs, which effectively excludes irrelevant parameters from being considered. Plus the contribution of Particle Swarm Optimization, the accuracy of the obtained equation can be guaranteed.
Wydawca

Czasopismo
Rocznik
Strony
287--301
Opis fizyczny
Bibliogr. 61 poz.
Twórcy
autor
  • China Construction Third Engineering Bureau Infrastructure Construction Investment Co., LTD, Gaoxin Rd No. 66 of Hongshan District, Wuhan 430070, People’s Republic of China, cycscectb3@outlook.com
  • China Shandong International Economic and Technical Cooperation Corporation, Jinan, People’s Republic of China, cscecbapu@hotmail.com
autor
  • China Construction Third Engineering Bureau Infrastructure Construction Investment Co., LTD, Gaoxin Rd No. 66 of Hongshan District, Wuhan 430070, People’s Republic of China, chylone@126.com
  • China Construction Third Engineering Bureau Infrastructure Construction Investment Co., LTD, Gaoxin Rd No. 66 of Hongshan District, Wuhan 430070, People’s Republic of China, chenzhupeijie@163.com
Bibliografia
  • 1. Andrievsky AP, Akhpashev BA (2017) Improvement of rock fragmentation by distributed charge blasting. J Min Sci 53:253-258
  • 2. Armaghani DJ et al (2014) Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arab J Geosci 7(12):5383-5396
  • 3. Armaghani DJ et al (2016) Evaluation and prediction of flyrock resulting from blasting operations using empirical and computational methods. Eng Comput 32(12):109-121
  • 4. Armaghani DJ et al (2020) A SVR-GWO technique to minimize flyrock distance resulting from blasting. B Eng Geol Environ 79:4369-4385
  • 5. Arora N, Kaur PD (2020) A Bolasso based consistent feature selection enabled random forest classification algorithm: an application to credit risk assessment. Appl Soft Comput 86:105936
  • 6. Arostegui MA et al (2006) An empirical comparison of tabu search, simulated annealing, and genetic algorithms for facilities location problems. Int J Prod Econ 103(2):742-754
  • 7. Bisoyi SK, Pal BK (2020) Prediction of ground vibration using various regression analysis. J Min Sci 56:378-387
  • 8. Dorigo M et al (2006) Ant colony optimization. IEEE Comput Intell M 1(4):28-39
  • 9. Enayatollahi I et al (2014) Comparison between neural networks and multiple regression analysis to predict rock fragmentation in openpit mines. Rock Mech Rock Eng 47:799-807
  • 10. Esfe MH et al (2018) Design of a heat exchanger working with organic nanofluids using multi-objective particle swarm optimization algorithm and response surface method. Int J Heat Mass Transf 119:922-930
  • 11. Faradonbeh RS et al (2016) Genetic programming and gene expression programming for flyrock assessment due to mine blasting. Int J Rock Mech Min 88:254-264
  • 12. Faradonbeh RS et al (2018) Prediction and minimization of blast-induced flyrock using gene expression programming and firefly algorithm. Neural Comput & Applic 29:269-281
  • 13. Faramarzi F et al (2013) A rock engineering systems based model to predict rock fragmentation by blasting. Int J Rock Mech Min 60:82-94
  • 14. Ghasemi E et al (2016) A new hybrid ANFIS-PSO model for prediction of peak particle velocity due to bench blasting. Eng Comput 32:607-614
  • 15. Ghasemi E et al (2014) Application of artificial intelligence techniques for predicting the flyrock distance caused by blasting operation. Arab J Geosci 7(1):193-202
  • 16. Ghasemi E et al (2012) Development of an empirical model for predicting the effects of controllable blasting parameters on flyrock distance in surface mines. Int J Rock Mech Min 52:163-170
  • 17. Gül E et al (2021) Modeling uniaxial compressive strength of some rocks from turkey using soft computing techniques. Measurement 171:108781
  • 18. Guo H et al (2019) A new technique to predict fly-rock in bench blasting based on an ensemble of support vector regression and GLMNET. Eng Comput 37:421-435
  • 19. Guo H et al (2021) Deep neural network and whale optimization algorithm to assess flyrock induced by blasting. Eng Comput 37:173-186
  • 20. Han H et al (2019) Random forest and bayesian network techniques-for probabilistic prediction of flyrock induced by blasting in quarry sites. Nat Resour Res 29:655-667
  • 21. Hasanipanah M, Amnieh HB (2021) Developing a new uncertain rule-based fuzzy approach for evaluating the blast-induced backbreak. Eng Comput 37:1879-1893
  • 22. Hasanipanah M et al (2016) Application of PSO to develop a powerful equation for prediction of flyrock due to blasting. Neural Comput Appl 28:1043-1050
  • 23. Hasanipanah M et al (2017) Development of a precise model for prediction of blast-induced flyrock using regression tree technique. Environ Earth Sci 76:27
  • 24. Hassan R et al (2005) A comparison of particle swarm optimization and the genetic algorithm 46th AIAA/ASME/ASCE/AHS/ASC structures. Struct Dyn Mater Conf. https://doi.org/10.2514/6. 2005-1897
  • 25. Hosseini S et al (2022) An ANN-fuzzy cognitive map-based Z-number theory to predict flyrock induced by blasting in open-pit mines. Rock Mech Rock Eng. https://doi.org/10.1007/ s00603-022-02866-z
  • 26. Hudaverdi T (2012) Application of multivariate analysis for prediction of blast-induced ground vibrations. Soil Dyn Earthq Eng 43:300-308
  • 27. Kecojevic V, Radomsky M (2005) Flyrock phenomena and area security in blasting-related accidents. Saf Sci 43(9):739-750
  • 28. Khandelwal M, Monjezi M (2013) Prediction of flyrock in open pit blasting operation using machine learning method. Int J Min Sci Technol 23:313-316
  • 29. Koopialipoor M et al (2019) Three hybrid intelligent models in estimating flyrock distance resulting from blasting. Eng Comput 35:243-256
  • 30. Kotti M (2019) Comparison between PSO and ACO techniques for analog circuit performance optimization. Sa u J S 23(2):162-174
  • 31. Kumar A, Tsvetkov PV (2015) A new approach to nuclear reactor design optimization using genetic algorithms and regression analysis. Ann Nucl Energy 85:27-35
  • 32. Lee CKH (2018) A review of applications of genetic algorithms in operations management. Eng Appl Artif Intel 76:1-12
  • 33. Li X et al (2020) building auto-encoder intrusion detection system based on random forest feature selection. Comput Secur 95:101851
  • 34. Liu S, Zhang J (2021) Machine-learning-based prediction of regularization parameters for seismic inverse problems. Acta Geophys 69:809-820
  • 35. Lu X et al (2019) ORELM: a novel machine learning approach for prediction of flyrock in mine blasting. Nat Resour Res 29:641-654
  • 36. Lundborg N et al (1975) Keeping the lid on flyrock in open pit blasting. Eng Min J 176:95-100
  • 37. Mazloumi E et al (2012) Efficient transit schedule design of timing points: a comparison of ant colony and genetic algorithms. Transport Res B-Meth 46(1):217-234
  • 38. Martinez C et al (2008) Comparison between ant colony and genetic algorithms for fuzzy system optimization. In: Castillo O et al (eds) Soft computing for hybrid intelligent systems studies in computational intelligence. Springer, Berlin, pp 71-86
  • 39. Menze BH (2009) A comparison of random forest and its gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinform 213:10
  • 40. Mohamad ET et al (2015) Prediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approach. Bull Eng Geol Environ 74:745-757
  • 41. Monjezi M et al (2011) Prediction and controlling of flyrock in blasting operation using artificial neural network. Arab J Geosci 4:421-425
  • 42. Mottahedi A et al (2014) 2018 Overbreak prediction in underground excavations using hybrid ANFIS-PSO model. Tunn Undergr Sp Tech 80:1-9
  • 43. Murlidhar BR et al (2021) Prediction of flyrock distance induced by mine blasting using a novel Harris Hawks optimization-based multi-layer perceptron neural network. J Rock Mech Geotech 13(6):1413-1427
  • 44. Nguyen H et al (2020) A novel combination of whale optimization algorithm and support vector machine with different kernel functions for prediction of blasting-induced fly-rock in quarry mines. Nat Resour Res 30:191-207
  • 45. Nguyen H, Bui XN et al (2019) Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: a case study. Acta Geophys 67:477-490
  • 46. Poli R et al (2007) Particle swarm optimization. Swarm Intell 1:33-57
  • 47. Rad HN et al (2017) Developing a least squares support vector machine for estimating the blast-induced flyrock. Eng Comput 34:709-717
  • 48. Rere LM et al (2015) Simulated annealing algorithm for deep learning. Procedia Comput Sci 72:137-144
  • 49. Rutkowski L (2014) The CART decision tree for mining data streams. Inf Sci 266:1-15
  • 50. Sun J et al (2019) Visualizing distribution of moisture content in tea leaves using optimization algorithms and NIR hyperspectral imaging. Comput Electron Agric 160:153-159
  • 51. Sheikhhosseini Z, Mirzaei N et al (2021) Delineation of potential seismic sources using weighted K-means cluster analysis and particle swarm optimization (PSO). Acta Geophys 69:2161-2172
  • 52. Trivedi R et al (2014) Prediction of blast-induced flyrock in Indian limestone mines using neural networks. J Rock Mech Geotech Eng 6:447-454
  • 53. Walt JVD, Spiteri W (2020) A critical analysis of recent research into the prediction of flyrock and related issues resulting from surface blasting activities. J South Afr Inst Min Metall 120(12):701-714
  • 54. Wang X et al (2023) Data-driven optimized artificial neural network technique for prediction of flyrock induced by boulder blasting. Mathematics 11(10):2358
  • 55. Xu G et al (2019) Particle swarm optimization based on dimensional learning strategy. Swarm Evol Comput 45:33-51
  • 56. Yari M et al (2016) Development of a novel flyrock distance prediction model using BPNN for providing blasting operation safety. Neural Comput Appl 27:699-706
  • 57. Yari M et al (2023) Several tree-based solutions for predicting flyrock distance due to mine blasting. Appl Sci 13(3):1345
  • 58. Zhang H (2020) A hybrid method integrating an elite genetic algorithm with tabu search for the quadratic assignment problem. Inf Sci 539:347-374
  • 59. Zhou Q et al (2016) Cost-sensitive feature selection using random forest: selecting low-cost subsets of informative features. Knowl Based Syst 95:1-11
  • 60. Zhou J et al (2019a) Use of intelligent methods to design effective pattern parameters of mine blasting to minimize flyrock distance. Nat Resour Res 29:625-639
  • 61. Zhou J et al (2019b) A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network. Eng Comput 36:713-723
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-85e48398-8f70-45a8-be94-d920ef4cd2a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.