Warianty tytułu
Języki publikacji
Abstrakty
In order to develop the reciprocating rotary driving actuator with a simple mechanism using shape memory alloy (SMA) tapes, the graphical method to design the actuator was proposed based on the torsional deformation properties of SMA tapes. The torsional deformation properties of the SME tape showing the shape memory effect (SME) and the SE tape showing superelasticity (SE) were obtained. The bias-type reciprocating rotary actuator was composed of the pretwisted SME tape and the flat SE tape in series. The design chart expressed by the relationship between torque and twisting angle of the SME tape and the SE tape was proposed. The rotational angle and torque, which vary depending on temperature, can be estimated based on the design chart. The rotational angle is controlled by adjusting the mounting angle of the SME tape and the heating temperature. The automatically opening and closing blind driven by sunlight was demonstrated. The blind was controlled by using the reciprocating rotary element composed of the SME tape and the SE tape. The behavior of the blind can be achieved based on the proposed design method of the reciprocating rotary driving element.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
289--303
Opis fizyczny
Bibliogr. 21 poz., rys. kolor.
Twórcy
autor
- Department of Mechanical Engineering Aichi Institute of Technology 1247 Yachigusa, Yakusa-cho, Totota 470-0392, Japan, k-takeda@aitech.ac.jp
autor
- Department of Mechanical Engineering Aichi Institute of Technology 1247 Yachigusa, Yakusa-cho, Totota 470-0392, Japan
autor
- Department of Mechanical Engineering Aichi Institute of Technology 1247 Yachigusa, Yakusa-cho, Totota 470-0392, Japan
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5b 02-106 Warsaw, Poland
Bibliografia
- 1. H. Funakubo [Ed.], Shape Memory Alloys, Gordon and Breach Science Pub., 1–60, 1987.
- 2. T.W. Duerig, K.N. Melton, D. Stockel, C.M. Wayman [Eds.], Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, 1–35, 1990.
- 3. K. Otsuka, C.M. Yayman, Shape Memory Materials, Cambridge University Press, 1–49, 1998.
- 4. H. Tobushi, R. Matsui, K. Takeda, E.A. Pieczyska, Mechanical Properties of Shape Memory Materials, Nova Science Pub., 1–103, 2013.
- 5. J.H. Mabe, R.T. Ruggeri, E. Rosenzweig, C.J. Yu, Nitinol performance characterization and rotary actuator design, Smart Struct. Mater.: 2004, Proc. of SPIE, 5388, 95–109, 2004.
- 6. J.H. Mabe, F.T. Calkins, R.T. Ruggeri, Full-scale flight tests of aircraft morphing structures using SMA actuators, Proc. of SPIE, 6525–65251C, 1–12, 2007.
- 7. H. Tobushi, E.A. Pieczyska, W.K. Nowacki, T. Sakuragi, Y. Sugimoto, Torsional deformation and rotary driving characteristics of SMA thin strip, Arch. Mech., 61, 3–4, 241–257, 2009.
- 8. E. Pieczyska, H. Tobushi, K. Date, K. Miyamoto, Torsional deformation and fatigue properties of TiNi SMA thin strip for rotary driving element, J. Solid Mech. Mater. Eng., 4, 8, 1306–1314, 2010.
- 9. H. Tobushi, E.A. Pieczyska, W.K. Nowacki, K. Date, K. Miyamoyo, Two-way rotary shape memory alloy thin strip actuator, J. Theo. Appl. Mech., 48, 4, 1043–1056, 2010.
- 10. H. Tobushi, E. Pieczyska, K. Miyamoto, K. Mitsui, Shape-memory alloy thin strip rotary actuator, Mater. Sci. Forum, 674, 219–224, 2011.
- 11. H. Funakubo [Ed.], Shape Memory Alloys, Gordon and Breach Science Pub., 33–36, 1987.
- 12. A. Oudich, F. Thiebaud, A two-way shape memory alloy-piezoelectric bimorph for thermal energy harvesting, Mech. Mater., 102, 1–6, 2016.
- 13. A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, S. Viscuso, The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators, Sens. Actuators A Phys., 158, 149–160, 2010.
- 14. A. Nespoli, E. Bassani, S. Besseghini, E. Villa, Rotational mini-actuator activated by two antagonist shape memory alloy wires, Phys. Procedia, 10, 182–188, 2010.
- 15. X.Y. Zhang, X.J. Yan, Continuous rotary motor actuated by multiple segments of shape memory alloy wires, J. Mater. Eng. Perform., 21, 2643–2649, 2012.
- 16. O. Benafan, J. Brown, F.T. Calkins, P. Kumar, A.P. Stebner, T.L. Turner, R. Vaidyanathan, J. webser, M.L. young, Shape memory alloy actuator design: CAS-MART collaborative best practices and case studies, Int. J. Mater. Des., 10, 1–42, 2014.
- 17. Z. Guo, Y. Pan, L.B. Wee, H. Yu, Design and control of a novel compliant differential shape memory alloy actuator, Sens. Actuators A Phys., 225, 71–80, 2015.
- 18. K. Saito, K. Iwata, Y. Ishihara, K. Sugita, M. Takato, F. Uchikoba, Miniaturized rotary actuators using shape memory alloy for insect-type MEMS microrobot, Micromachines, 7, 4, 58, 2016; doi: 10.3390/mi7040058.
- 19. T.W. Duerig, K.N. Melton, D. Stockel, C.M. Wayman [Eds.], Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, 245–266, 1990.
- 20. H. Funakubo [Ed.], Shape Memory Alloys, Gordon and Breach Science Pub., 177–194, 1987.
- 21. P.H. Lin, H. Tobushi, K. Tanaka, C. Lexcellent, A. Ikai, Recovery stress of TiNi shape memory alloy under constant strain, Arch. Mech., 47, 2, 281–293, 1995.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-85c3043a-84ec-488c-83cd-ed975be160aa