Warianty tytułu
Języki publikacji
Abstrakty
Propagation of arbitrarily polarized light through inhomogeneous media is modeled in this paper. The model can include parameters of the media such as relative dielectric constant, relative magnetic constant and electric conductivity. The orientation of the electric field strength of the light source could be defined arbitrarily, and in this paper two polarization modes are considered: transverse electric (TE) mode and transverse magnetic (TM) mode. The electric field vector could change its orientation in dependence on the characteristics of the media. The model developed in this paper is based on the finite difference time domain (FDTD) method and Maxwell’s equations. A two-dimensional formulation of FDTD is applied in this computing. Several cases were considered, and the results obtained in this paper agree with the literature. The model shown in this paper does not require much time for computer processing and can be easily applied for specific cases of media, source, and light.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
523--538
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
- Faculty of Science, University of Kragujevac, R. Domanovic 12, 34000 Kragujevac, Serbia
autor
- Faculty of Science, University of Kragujevac, R. Domanovic 12, 34000 Kragujevac, Serbia, nstevanovic@kg.ac.rs
autor
- Faculty of Science, University of Kragujevac, R. Domanovic 12, 34000 Kragujevac, Serbia
autor
- Faculty of Science, University of Kragujevac, R. Domanovic 12, 34000 Kragujevac, Serbia
Bibliografia
- [1] WANG W., ZHANG X., MENG Q., ZHENG Y., Propagation analysis of phase-induced amplitude apodization optics based on boundary wave diffraction theory, Optics Express 25(21), 2017: 25992-26001. https://doi.org/10.1364/OE.25.025992
- [2] TSENG S.H., Modeling the sub-diffraction focusing phenomenon of light propagation through scattering medium, Methods 136, 2018: 75-80. https://doi.org/10.1016/j.ymeth.2017.11.001
- [3] VOLPE F.A., LETOURNEAU P.-D., ZHAO A., Huygens–Fresnel wavefront tracing, Computer Physics Communications 212, 2017: 123-131. https://doi.org/10.1016/j.cpc.2016.10.021
- [4] MAKRIS K.G., PSALTIS D., Huygens–Fresnel diffraction and evanescent waves, Optics Communications 284(6), 2011: 1686-1689. https://doi.org/10.1016/j.optcom.2010.10.001
- [5] SABATYAN A., TAVASSOLY M. T., Determination of refractive indices of liquids by Fresnel diffraction, Optics & Laser Technology 41(7), 2009: 892-896. https://doi.org/10.1016/j.optlastec.2009.02.007
- [6] WANG J., ZHANG W., CUI Y., TENG S., Fresnel diffraction by a square aperture with rough edge, Optik 126(21), 2015: 3066-3071. https://doi.org/10.1016/j.ijleo.2015.07.101
- [7] CUI Y., ZHANG W., WANG J., ZHANG M., TENG S., Fresnel diffraction of aperture with rough edge, Journal of Optics 17(6), 2015: 065607. https://doi.org/10.1088/2040-8978/17/6/065607
- [8] ABEDIN K.M., MUJIBUR RAHMAN S.M., Computer simulation of Fresnel diffraction from double rectangular apertures in one and two dimensions using the iterative Fresnel integrals method, Optics & Laser Technology 44(2), 2012: 394-402. https://doi.org/10.1016/j.optlastec.2011.08.001
- [9] ABEDIN K.M., MUJIBUR RAHMAN S.M., The iterative Fresnel integrals method for Fresnel diffraction from tilted rectangular apertures: Theory and simulations, Optics & Laser Technology 44(4), 2012: 939-947. https://doi.org/10.1016/j.optlastec.2011.11.004
- [10] ABEDIN K.M., ISLAM M.R., HAIDER A.F.M.Y., Computer simulation of Fresnel diffraction from rectangular apertures and obstacles using the Fresnel integrals approach, Optics & Laser Technology 39(2), 2007: 237-246. https://doi.org/10.1016/j.optlastec.2005.08.011
- [11] LU Z., TAN J., QI J., FAN Z., ZHANG L., Modeling Fraunhofer diffractive characteristics for modulation transfer function analysis of tilted ring metallic mesh, Optics Communications 284(16-17), 2011: 3855-3861. https://doi.org/10.1016/j.optcom.2011.04.040
- [12] WU Y., MA J., YANG Y., SUN P., Improvements of measuring the width of Fraunhofer diffraction fringes using Fourier transform, Optik 126(23), 2015: 4142-4145. https://doi.org/10.1016/j.ijleo.2015.07.202
- [13] TAN J., LU Z., LIU J., JIN P., WANG Y., Analysis of Fraunhofer diffractive characteristics of a tilted metallic mesh for its effect on optical measurement, Measurement Science and Technology 18(6), 2007: 1703. https://doi.org/10.1088/0957-0233/18/6/S06
- [14] ZHANG Z., BAI H., YANG G., JIANG F., REN Y., LI J., YANG K., YANG H., Computer simulation of Fraunhofer diffraction based on MATLAB, Optik 124(20), 2013: 4449-4451. https://doi.org/10.1016/j.ijleo.2013.03.004
- [15] BELAFHAL A., DALIL-ESSAKALI L., FAHAD M., Fraunhofer diffraction by conical tracks, Optics Communications 175(1-3), 2000: 51-55. https://doi.org/10.1016/S0030-4018(99)00764-6
- [16] IBNCHAIKH M., NASSIM K., BELAFHAL A., Theoretical study of Fraunhofer diffraction by hemispherical tracks, Phys. Chem. News 4, 2001: 15-18.
- [17] STEVANOVIC N., MARKOVIC V.M., Diffraction pattern by rotated conical tracks in solid state nuclear track detectors, Optics & Laser Technology 80, 2016: 204-208. https://doi.org/10.1016/j.optlastec.2016.01.019
- [18] STEVANOVIC N., MARKOVIC V.M., NIKEZIC D., New method for determination of diffraction light pattern of the arbitrary surface, Optics & Laser Technology 90, 2017: 90-95. https://doi.org/10.1016/j.optlastec.2016.11.012
- [19] MARKOVIC V.M., STEVANOVIC N., NIKEZIC D., Propagation of light from dipole source and generalization of Fresnel-Kirchhoff integral, Optik 180, 2019: 447-454. https://doi.org/10.1016/j.ijleo.2018.11.132
- [20] SHIMOBABA T., MASUDA N., ITO T., Arbitrary shape surface Fresnel diffraction, Optics Express 20(8), 2012: 9335-9340. https://doi.org/10.1364/OE.20.009335
- [21] SIMOVIĆ A., DRLJAČA B., SAVOVIĆ S., DJORDJEVICH A., MIN R., Investigation of bandwidth in multimode graded-index plastic optical fibers, Optics Express 29(19), 2021: 29587-29594. https://doi.org/10.1364/OE.433481
- [22] SIMOVIĆ A., SAVOVIĆ S., DRLJAČA B., DJORDJEVICH A., Influence of the fiber design and launch beam on transmission characteristics of multimode glass W-type optical fibers, Optics & Laser Technology 68, 2015: 151-159. https://doi.org/10.1016/j.optlastec.2014.11.021
- [23] DRLJAČA B., SAVOVIĆ S., DJORDJEVICH A., Calculation of the frequency response and bandwidth in step-index plastic optical fibres using the time-dependent power flow equation, Physica Scripta 2012(T149), 2012: 014028. https://doi.org/10.1088/0031-8949/2012/T149/014028
- [24] SULLIVAN D.M., Electromagnetic Simulation Using Finite-Difference Time-Domain Method, Institute of Electrical and Electronics Engineering, Inc., New York, 2020.
- [25] LWIN Z.M., YOKOTA M., Numerical analysis of SAR and temperature distribution in two dimensional human head model based on FDTD parameters and the polarization of electromagnetic wave, AEU - International Journal of Electronics and Communications 104, 2019: 91-98. https://doi.org/10.1016/j.aeue.2019.03.010
- [26] ALISOY H.Z., BARLAZ US S., ALAGOZ B.B., An FDTD based numerical analysis of microwave propagation properties in a skin-fat tissue layers, Optik 124(21), 2013: 5218-5224. https://doi.org/10.1016/j.ijleo.2013.03.085
- [27] BORN M., WOLF E., Principles of Optics, Pergamon Press, New York, 1970.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-85c20dcc-abaa-4f3a-aea5-6e95cf2a022b