Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 36, no. 4 | 584--596
Tytuł artykułu

Automatic segmentation of cell nuclei using Krill Herd optimization based multi-thresholding and Localized Active Contour Model

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Analysis of tissue components in histopathology image stays on as the gold standard in detecting different types of cancers. Active Contour Models (ACM) serve as a widely useful tool in object segmentation in pathology images. Since the ACMs are susceptible to initial contour placement, efficiency of object detection is very much influenced by the selection of primary curve placement technique. In this paper, in order to handle diffused intensities present along object boundaries in histopathology images, segmentation of nuclei from breast histopathology images are carried out by Localized Active Contour Model (LACM) utilizing bio-inspired optimization techniques in the detection stage. Krill Herd Algorithm (KHA) based optimal curve placement provides better initial boundaries compared with other detection techniques. The segmentation performance is investigated based on Housdorff (HD) and Maximum Absolute Distance (MAD) measures. The algorithm also shows comparable performance with other state-of-the-art techniques in terms of quantitative measures such as Precision, Accuracy and Touching Nuclei Resolution when applied to complex images of stained breast biopsy slides.
Wydawca

Rocznik
Strony
584--596
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
autor
  • Electrical Engineering Department, College of Engineering Trivandrum, Kerala, India; Electrical & Electronics Department, T. K. M College of Engineering, Kollam, Kerala, India, sabeena3000@gmail.com
autor
  • Department of Computer Science, University of Kerala, Kariavattom, Thiruvanthapuram 695581, Kerala, India, madhu_s_nair2001@yahoo.com
autor
  • Electrical Engineering Department, College of Engineering Trivandrum, Kerala, India, bgr100@gmail.com
Bibliografia
  • [1] Tavassoli FA, Devilee P.Tumours of the Breast and Female Genital Organs. World Health Organization Classification of Tumours. Pathology & Genetics. International Agency for Research on Cancer; 2003, September.
  • [2] Chan TF, Vese LA. Active contours without edges. IEEE Trans Image Process 2001;10(2):266–77.
  • [3] Doyle S, Hwang M, Shah K, Madabhushi A, Tomasezweski J, Feldman M. Automated grading of prostate cancer using architectural and textural image features. Proc Int Symp Biomed Imag (ISBI). 2007. pp. 1284–7.
  • [4] Rousson M, Paragios N. Shape priors for level set representation. Eur Conf Comput Vis. 2002. pp. 78–92.
  • [5] Bresson X, Vandergheynst P, Thiran JP. A priori information in image segmentation: energy functional based on shape statistical model and image information.IEEE Int Conf Image Process. 3. 2003, September. p. 425–8.
  • [6] Sagiv C, Sochen NA, Zeevi YY. Integrated active contours for texture segmentation. IEEE Trans Image Process 2006;15 (6):1633–46.
  • [7] Fatakdawala H, Xu J, Basavanhally A, Bhanot G, Ganesan S, Feldman M, et al. Expectation maximization driven geodesic active contour with overlap resolution (EMaGACOR): application to lymphocyte segmentation on breast cancer histopathology. IEEE Trans Biomed Eng 2010;57(July (7)):1676–89.
  • [8] Fang W, Chan KL. Statistical shape influence in geodesic active contours. IEEE Conference in Computer Vision and Pattern Recognition. 40. 2007. p. 2163–72.
  • [9] Ali S, Madabhushi A. An integrated region-, boundary-, shapebased active contour for multiple object overlap resolution in histological imagery. IEEE Trans Med Imaging 2012;31(7):1448–60.
  • [10] Lankton S, Tannenbaum A. Localizing region-based active contours. IEEE Trans Image Process 2008;17(11):2029–39.
  • [11] Gandomi AH, Alavi AH. Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 2012;17(May):4831–45.
  • [12] Bartler P, Wied G. Computer analysis and biomedical interpretation of microscopic images: current problems and future directions. Invited Paper in Proceedings of the IEEE; 1977, February.
  • [13] Yin Peng-Yeng. A fast scheme for multilevel thresholding using genetic algorithms. Signal Process 1999;85–95.
  • [14] Fogel DB. Evolutionary computation: toward a new philosophy of machine intelligence. 2nd ed. Piscataway: IEEE Press; 2000.
  • [15] Chuang K, Tzeng S, Chen H, Wu J, Chen T. Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imaging Graph 2006;30:9–15.
  • [16] Anari V, Mahzouni P, Amirfattahi R. Computer-aided detection of proliferative cells and mitosis index in immunohistichemically images of meningioma. Proc 6th Iran Conf Mach Vis Image Process; 2010. pp. 1–5.
  • [17] Maitra M, Chatterjee A. A hybrid cooperative- comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding. Expert Syst Appl 2008;34:1341–50.
  • [18] Akay B. A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl Soft Comput 2012;13(6):3066–91.
  • [19] Kapur JN, Sahoo PK, Wong AKC. A new method for gray- level picture thresholding using the entropy of the histogram. Comput Vis Graph Image Process 1985;273–85.
  • [20] Geem ZW, Kim JH, Loganathan G. A new heuristic optimization algorithm: harmony search. Simulation 2001;76(2):60–8.
  • [21] Sathya PD, Kayalvizhi R. Optimal multilevel thresholding using bacterial foraging algorithm. Expert Syst Appl 2011;38:15549–66.
  • [22] Gurcan MN, Pan T, Shimada H. Image analysis for neuroblastoma classification: segmentation of cell nuclei. Proceedings of 28th International Conference of the IEEE Engineering in Medicine and Biology Society; 2006. p. 4844–7.
  • [23] Beevi K. S, Bindu GR, Nair S, Madhu. Automatic segmentation and classification of mitotic cell nuclei in histopathology images based on active contour model. Proceedings of IEEE International Conference on Contemporary Computing (IC3I); 2014. p. 740–4.
  • [24] Sertel O, Catalyurek UV, Shimada H, Gurcan MN. Computeraided prognosis of neuroblastoma: detection of mitosis and karyorrhexis cells in digitized histological images. Proc IEEE 31st Annu Int Conf Eng Med Biol Soc. 2009 Sep. pp. 1433–6.
  • [25] Dalle J-R, Li H, Huang C-H, Leow WK, Racoceanu D, Putti TC. Nuclear pleomorphism scoring by selective cell nuclei detection. Proc IEEE Workshop Appl Comput Vis; 2009.
  • [26] Wahlby C, Sintorn IM, Erlandsson F, Borgefors G, Bengtsson E. Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J Microsc 2004;215(1):67–76.
  • [27] Cosatto E, Miller M. Grading nuclear pleomorphism on histological micrographs. Proc 19th International Conference on Pattern Recognition. 2008, December. pp. 1–4.
  • [28] Al-Kofahi Y, Lassoued W, Lee W, Roysam B. Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans Biomed Eng 2010;57(4 (April)):841–52.
  • [29] Veta M, Huisman A, Viergever MA, van Diest PJ, Pluim JPW. Marker-controlled watershed segmentation of nuclei in H & E stained breast cancer biopsy images. Proc 8th IEEE Int Symp Biomed Imaging: Nano Macro. 2011 Apr. pp. 618–21.
  • [30] Irshad H. Automated mitosis detection in histopathology using morphological and multi-channel statistics features. J Pathol Inform 2013;4(May):10–5.
  • [31] Beevi K. S, Bindu GR. Analysis of nuclei detection with stain normalization in histopathology images Indian. J Sci Technol 2015;8(September):234–8.
  • [32] Wienert S, Heim D, Saeger K, Stenzinger A, Beil M, Hufnagl P, et al. Detection and segmentation of cell nuclei in virtual microscopy images: a minimum-model approach. Sci Rep 2012;2(July).
  • [33] Veta M, van Diest PJ, Kornegoor R, Huisman A, Viergever MA, Pluim JPW. Automatic nuclei segmentation in H&E stained breast cancer histopathology images. PLoS ONE 2013;8(July (7)):274–83.
  • [34] Chang H, Loss LA, Parvin B. Nuclear segmentation in H&E sections via multi-reference graph cut (MRGC). Proc 9th IEEE Int Symp Biomed Imaging: Nano Macro. 2012. pp. 614–7.
  • [35] Qi X, Xing F, Foran DJ, Yang L. Robust segmentation of overlapping cells in histopathology specimens using parallel seed detection and repulsive level set. IEEE Trans Biomed Eng 2012;59(March (3)):754–65.
  • [36] John J, Nair MS, Anil Kumar PR, Wilscy M. A novel approach for detection and delineation of cell nuclei using feature similarity index measure. Biocybern Biomed Eng 2016;36:76–88.
  • [37] Veta M, Pluim JPW, van Diest PJ, Viergever MA. Breast cancer histopathology image analysis: a review. IEEE Trans Biomed Eng 2014;61(May (5)).
  • [38] Qi X, Xing F, Foran DJ, Yang L. Robust segmentation of overlapping cells in histopathology specimens using parallel seed detection and repulsive level set. IEEE Trans Biomed Eng 2012;59(March (3)):754–65.
  • [39] Jung C, Kim C, Chae SW, Oh S. Unsupervised segmentation of overlapped nuclei using Bayesian classification. IEEE Trans Biomed Eng 2010;57(December (12)):2825–32.
  • [40] Veta M, van Diest PJ, Kornegoor R, Huisman A, Viergever MA, Pluim JPW. Automatic nuclei segmentation in H&E stained breast cancer histopathology images. PLoS ONE 2013;8(July (7)):e70221.
  • [41] Naik S, Doyle S, Agner S, Madabhushi A, Feldman M, Tomaszewski J. Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology. Proc IEEE Int Symp Biomed Imaging; 2008. pp. 284–7.
  • [42] Kong H, Gurcan M, Belkacem-Boussaid K. Partitioning histopathological images: an integrated framework for supervised color texture segmentation and cell splitting. IEEE Trans Med Imaging 2011;30(September (9)):1661–77.
  • [43] Khan A, Rajpoot N. A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans Biomed Eng 2014;61(June (6)):1729–38.
  • [44] Yamane N, Morikawa Y, Kawakami Y, Takahashi H. An optimal noise removal using adaptive Wiener filter based on locally stationary Gaussian mixture distribution model for images. Institute of Electronics Information and Communication Engineers of Japan, vol. J85-A (9). 2002. pp. 993–1004.
  • [45] Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput Vis 1988;1(4):321–31.
  • [46] Osher S, Fedkiw R. Level set methods and dynamic implicit surfaces. New York, NY: Cambridge University Press; 2003, 14, 18, 25.
  • [47] Caselles V, Kimmel R, Sapiro G. Geodesic active contours. Int J Comput Vis 1997;22(1):61–79.
  • [48] Yezzi JA, Tsai A, Willsky A. A fully global approach to image segmentation via coupled curve evolution equations. J Vis Commun Image Rep 2002;13(March (1)):195–216.
  • [49] MITOS, ICPR 2014 Contest, IPAL UMI CNRS Lab Std., Available form: http://ipal.cnrs.fr/ICPR2014.
  • [50] Kowalski PA, Ludasik S. Experimental study of selected parameters of Krill Herd algorithm. Artif Intell Soft Comput 2014;294–307.
  • [51] Lu C, Mandal M. Toward automatic mitotic cell detection and segmentation in multi spectral histopathological images. IEEE J Biomed Health Inf 2014;18(March (2)):850–70.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-85a2841b-4597-413f-87b8-cbaa4931bfcb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.