Czasopismo
2023
|
Vol. 23, no. 3
|
art. no. e153, 2023
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Earthen sites (i.e., ancient earthen buildings) with important historical, cultural, artistic, social, and scientific value have been seriously damaged. Soil treatment with chemical additives can decrease the degradation rate of earthen sites. In the past, polyvinyl alcohol (PVA) and quicklime as chemical additives were studied separately for the protection of earthen sites. In arid and semi-arid northwest China, the early strength of the lime-treated soil may be insufficient due to an inappropriate reaction environment, and the PVA as the additive can quickly increase the soil strength. However, calcium carbonate has been proven to not be decomposed for hundreds of years, while there is still a lack of experimental evidence to show that the PVA cannot be decomposed in decades. The PVA and lime as the additives show the potential to make up for the defects each other. Therefore, the physical and mechanical properties of the PVA and lime composite soil are analysed, and the microscopic properties of the composite soil are discussed in this study. The results show that the addition of the PVA decreases water vapour permeability and pore size, which causes a delay in the carbonization reaction of lime, but it acts as a cementing agent to improve soil strength before the lime appropriately reacts. The addition of quicklime can decrease the hydrophobicity of the PVA-treated soil. The mixing of these two materials is conducive to the colour control of the sample. For the composite soil applied to earthen sites in northwest China, the optimal ratio is 10% lime and 1.0% PVA.
Czasopismo
Rocznik
Tom
Strony
art. no. e153, 2023
Opis fizyczny
Bibliogr. 54 poz., rys., wykr.
Twórcy
autor
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
autor
- Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China, xiaoniu.yu@ntu.edu.sg
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
autor
- College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China
Bibliografia
- 1. Casnedi L, Cappai M, Cincotti A, Delogu F, Pia G. Porosity effects on water vapour permeability in earthen materials: experi- mental evidence and modelling description. J Build Eng. 2020;27: 100987.
- 2. Staniec M, Nowak H. Analysis of the earth-sheltered buildings’ heating and cooling energy demand depending on type of soil. Arch Civ Mech Eng. 2011;11(1):221–35.
- 3. Zhang QY, Chen WW, Fan WJ, Liu DW. The effect of polyvinyl alcohol solution with a high degree of alcoholysis on the expan- sion and cracking behaviour of quicklime-treated soil in earthen sites. Bull Eng Geol Env. 2021;80:4159–70.
- 4. Elert K, Jroundi F, Benavides-Reyes C, Gómez EC, Gulotta D, Rodriguez-Navarro C. Consolidation of clay-rich earthen building materials: a comparative study at the Alhambra fortress (Spain). J Build Eng. 2022;50: 104081.
- 5. Huang Y, Karami B, Shahsavari D, Tounsi A. Static stability anal- ysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels. Arch Civ Mech Eng. 2021;21(4):139.
- 6. Bourada F, Bousahla AA, Tounsi A, Bedia EAA, Mahmoud SR, Benrahou KH, Tounsi A. Stability and dynamic analyses of SW- CNT reinforced concrete beam resting on elastic-foundation. Comput Concr. 2020;25(6):485–95.
- 7. Garg A, Aggarwal P, Aggarwal Y, Belarbi MO, Chalak HD, Tounsi A, Gulia R. Machine learning models for predicting the compressive strength of concrete containing nano silica. Comput Concr. 2022;30(1):33–42.
- 8. Hachemi H, Bousahla AA, Kaci A, Bourada F, Tounsi A, Ben- rahou KH, Tounsi A, Al-Zahrani MM, Mahmoud SR. Bending analysis of functionally graded plates using a new refined quasi- 3D shear deformation theory and the concept of the neutral sur- face position. Steel Compos Struct. 2021;39(1):51–64.
- 9. Tahir SI, Tounsi A, Chikh A, Al-Osta MA, Al-Dulaijan SU, Al- Zahrani MM. The effect of three-variable viscoelastic founda- tion on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT. Steel Compos Struct. 2022;42(4):501–11.
- 10. Bakoura A, Djedid IK, Bourada F, Bousahla AA, Mahmoud SR, Tounsi A, Ghazwani MH, Alnujaie A. A mechanical behavior of composite plates using a simple three variable refined plate theory. Struct Eng Mech. 2022;83(5):617–25.
- 11. Chen WW, Zhang YM, Zhang JK, Dai PF. Consolidation effect of composite materials on earthen sites. Constr Build Mater. 2018;187:730–7.
- 12. Wei GF, Zhang H, Wang HM, Fang SQ, Zhang BJ, Yang FW. An experimental study on application of sticky rice-lime mortar in conservation of the stone tower in the Xiangji Temple. Constr Build Mater. 2012;28(1):624–32.
- 13. Wang CQ, Liu DS, Huang Q. A new civil engineering material: normal temperature modified phosphogypsum embedded filler. Arch Civ Mech Eng. 2021;21:5.
- 14. Abiodun AA, Nalbantoglu Z. Lime pile techniques for the improvement of clay soils. Can Geotech J. 2015;52(6):760–8.
- 15. Jia L, Guo J, Zhou ZD, Fu Y, Yao K. Experimental investiga- tion on strength development of lime stabilized loess. RSC Adv. 2019;9(34):19680–9.
- 16. Jerman M, Scheinherrová L, Medveď I, Krejsová J, Doleželová M, Bezdička P, Černý R. Effect of cyclic wetting and drying on microstructure, composition and length changes of lime-based plasters. Cement Concr Compos. 2019;104: 103411.
- 17. Veiga R. Air lime mortars: What else do we need to know to apply them in conservation and rehabilitation interventions? A review. Constr Build Mater. 2017;157:132–40.
- 18. Van Balen K, Van Gemert D. Modelling lime mortar carbona- tion. Mater Struct. 1994;27:393–8.
- 19. Yang FW, Zhang BJ, Ma QL. Study of sticky rice−lime mortar technology for the restoration of historical masonry construc- tion. Acc Chem Res. 2010;43(6):936–44.
- 20. Kukal SS, Kaur M, Bawa SS, Gupta N. Water-drop stability of PVA-treated natural soil aggregates from different land uses. CATENA. 2007;70(3):475–9.
- 21. Mirzababaei M, Arulrajah A, Horpibulsuk S, Soltani A, Khayat N. Stabilization of soft clay using short fibers and poly vinyl alcohol. Geotext Geomembr. 2018;46(5):646–55.
- 22. Yan RX. Water-soluble polymer. Beijing: Chemical Industry Press; 1998. ((In Chinese)).
- 23. Li M, Chai SX, Zhang HY, Du HP, Wei L. Feasibility of rein- forced saline soil with treated wheat straw and lime. Soil Found. 2012;52(2):231–41.
- 24. Zhang QY, Chen WW, Yuan PB. Experimental study on impregnation and consolidation effects of modified polyvinyl alcohol solution for coarse-grained soils: a case study on the Subashi Buddhist Temple Ruins of China. Bull Eng Geol Env. 2020;79(3):1487–500.
- 25. Lee JA, Kim MN. Isolation of new and potent poly(vinyl alcohol)-degrading strains and their degradation activity. Polym Degrad Stab. 2003;81(2):303–8.
- 26. Zhang QY, Chen WW, Zhang JK. Wettability of earthen sites protected by PVA solution with a high degree of alcoholysis. CATENA. 2021;196: 104929.
- 27. Fan WJ, Chen WW, Zhang QY, Wu GC. Feasibility of protect- ing earthen sites with sticky rice and lime composite. Constr Build Mater. 2022;346: 128449.
- 28. ASTM: D2487, 2017. Standard practice for classification of soils for engineering purpose (Unified Soil Classification Sys- tem). ASTM International, West Conshohocken, PA.
- 29. ASTM: D2166/D2166M, 2016. Standard test methods for unconfined compressive strength of cohesive soil. ASTM Inter- national, West Conshohocken, PA.
- 30. ASTM: E96, 2016. Standard test methods for water vapor trans- mission of materials. ASTM International, West Conshohocken, PA.
- 31. BS EN 15803, 2009. Conservation of cultural property—test methods—determination of water vapour permeability (δp).
- 32. Camerini R, Chelazzi D, Giorgi R, Baglioni P. Hybrid nano- composites for the consolidation of earthen masonry. J Colloid Interface Sci. 2019;539:504–15.
- 33. Elert K, Pardo ES, Rodriguez-Navarro C. Alkaline activation as an alternative method for the consolidation of earthen architecture. J Cult Herit. 2015;16(4):461–9.
- 34. Bachmann J, Woche SK, Goebel M-O, Kirkham MB, Horton R. Extended methodology for determining wetting properties of porous media. Water Resour Res. 2003;39(12):1353.
- 35. Ellies A, RamiRez C, Donald RM. Organic matter and wetting capacity distribution in aggregates of Chilean soils. CATENA. 2005;59(1):69–78.
- 36. Bisdom E, Dekker LW, Schoute JFT. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma. 1993;56(1):105–18.
- 37. Lu SG, Malik Z, Chen DP, Wu CF. Porosity and pore size distri- bution of Ultisols and correlations to soil iron oxides. CATENA. 2014;123:79–87.
- 38. Liu K, Ostadhassan M. The impact of pore size distribution data presentation format on pore structure interpretation of shales. Adv Geo-Energy Res. 2019;3(2):187–97.
- 39. Eires R, Camoes A, Jalali S. Enhancing water resistance of earthen buildings with quicklime and oil. J Clean Prod. 2017;142:3281–92.
- 40. Liu ZD, Wang JL. TEOS modified with PMHS as consolidating coating to improve the strength and hydrophobicity of earthen structures. Constr Build Mater. 2022;322: 126165.
- 41. Wang XD, Zhang B, Pei QQ, Guo QL, Chen WW, Li FJ. Experi- mental studies on sacrificial layer in conservation of earthen sites. J Cult Herit. 2020;41:74–83.
- 42. Zhang JF. Discussion on color difference by chemical consolida- tion on earthen sites, China. Cult Herit Sci Res. 2016;4:51–7.
- 43. Harvey OR, Harris JP, Herbert BE, Stiffler EA, Haney SP. Natural organic matter and the formation of calcium-silicate-hydrates in lime-stabilized smectites: a thermal analysis study. Thermochim Acta. 2010;505(1–2):106–13.
- 44. Liu M, Cai LX, Luo HB. Effect of nano-silica on microbio- logically induced calcium carbonate precipitation. Constr Build Mater. 2022;314: 125661.
- 45. Ramasamy V, Rajkumar P, Ponnusamy V. Depth wise analysis of recently excavated Vellar river sediments through FTIR and XRD studies. Indian J Phys. 2009;83:1295–308.
- 46. Yang T, Ma X, Zhang BJ, Zhang H. Investigations into the func- tion of sticky rice on the microstructures of hydrated lime putties. Constr Build Mater. 2016;102:105–12.
- 47. Xue B, Zhang JH, Zhou T. Moving-window two-dimensional cor- relation infrared spectroscopic study on the dissolution process of poly(vinyl alcohol). Anal Bioanal Chem. 2015;407(29):8765–71.
- 48. Li YL, Wang TH, Su LJ. Determination of bound water content of loess soils by isothermal adsorption and thermogravimetric analysis. Soil Sci. 2015;180(3):90–6.
- 49. Lei XY. Pore type and collapsibility of Chinese loess. Sci Sinica. 1987;12:1309–16.
- 50. Bonapasta AA, Buda F, Colombet P, Guerrini G. Cross-linking of poly(vinyl alcohol) chains by Ca ions in macro-defect-free cements. Chem Mater. 2002;14:1016–22.
- 51. Zhang QY, Chen WW, Wu GC. Material selection for the hydro- phobic cushion layer applied to earthen sites in northwest China. Stud Conserv. 2023;68(2):243–57.
- 52. Rahimi MR, Mohammadi SD, Heidari M, Jalali SH. Correlation between mineral composition and P-wave velocity, strength and textural properties of sulfate rocks in dry and saturated conditions. J Appl Geophys. 2021;192: 104397.
- 53. Doerr SH, Shakesby RA, Walsh RPD. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci Rev. 2000;51(1–4):33–65.
- 54. Fujii Y, Fodde E, Watanabe K, Murakami K. Digital photogram- metry for the documentation of structural damage in earthen archaeological sites: the case of Ajina Tepa, Tajikistan. Eng Geol. 2009;105:124–33.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-857cccd4-dfed-4fc8-8288-ed167af2c0c2