Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2024 | Nr 4 | 32--38
Tytuł artykułu

Zastosowanie metod uczenia maszynowego do krótkoterminowych prognoz cen energii na rynku dnia następnego

Warianty tytułu
EN
Application of machine learning methods for short-term forecasts of energy prices in the day ahead market
Języki publikacji
PL
Abstrakty
PL
Artykuł porusza problematykę krótkoterminowego prognozowania cen energii elektrycznej na Towarowej Giełdzie Energii przy zastosowaniu algorytmów uczenia maszynowego. Badania zostały przeprowadzone na rzeczywistych danych historycznych z Rynku Dnia Następnego (RDN) publikowanych przez TGE S.A. oraz danych z Planów Koordynacyjnych Dobowych publikowanych przez PSE S.A. W artykule zaproponowano dwa modele prognostyczne, tj. regresję liniową oraz regresję wielomianową. Próby zostały wykonane na 30-sto oraz 60-cio dniowych okresach testowych, a następnie zostały wykonane prognozy wygasłe. Wyniki zostały przedstawione w postaci wskaźnika R2 oraz błędu względnego prognoz.
EN
The article is about short term prediction of electricity prices on the polish power exchange (TGE) with algorithms of the machine learning. Research was conducted on actual historical data taken from Day—Ahead Market (RDN) publicized by TGE S.A. and data from day’s coordination plans publicized by PSE S.A. In the article the authors propose two prediction models: linear regression and polynomial regression. Test were taken on 30 and 60 day periods the there were made terminated forecasts. The results were are presented in the form of R2 index and relative error of the forecasts.
Wydawca

Czasopismo
Rocznik
Tom
Strony
32--38
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
Bibliografia
  • 1] Asmine M., Brochu J., Fortmann J., Gagnon R., Kazachkov Y., Langlois C.E., Larose C., Muljadi,E., MacDowell J., Pourbeik P. et al. Model validation for wind turbine generator models. IEEE Trans. Power Syst. 2011, 26, 1769—1782.
  • [2] Xu M.; Gu T.; Xu J.; Wang K.; Li G.; Guo, F. Electromechanical modeling of the direct—driven wind turbine generator considering the stochastic component of wind speed. In Proceedings of the 2nd IEEE Conference on Energy Internet and Energy System Integration (E12), Beijing, China, 20—22 October 2018; p. 185.
  • [3] Silva E.A.; Bradaschia F.; Cavalcanti M.C.; Nascimento, A.J.; Michels, L.; Pietta, L.P. An eight—parameter adaptive model for the singlediode equivalent circuit based on the photovoltaicmoduleis physics. IEEEJ.Photovoltaics, 2017,7, 1115—1123.
  • [4] L J. F. ,Zhang B. H.,Xie, G. L.,Li, Y „Mao C.X. Grey predictor models for wind speed-wind power prediction. Power Sysem Prot. Control. 2010, 38, 152—159.
  • [5] Hua S.,Wang S.; Jin S. Fen, S. ;Wang B. Wind speed optimisation method of numerical prediction for wind farm based on Kalman filter method. J. Eng. 2017, 1146—1149.
  • [6] Gao S.; He Y.; Chen H. Wind speed forecast for wind farms based on ARMAARCH model. In Proceedings of the 2009 International Conference on Sustainable Power Generation and Supply, Nanjing, China, 6—7 April 2009.
  • [7] Tian S.; Fu Y.; Ling P.;Wei S.; Liu S.; Li K. Wind power forecasting based on ARIMA—LGARCH model. In Proceedings of the 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 6—9 November 2018.
  • [8] Popławski T.;Weżgowiec M. IT implementation ofthe creeping trend model for wind farm power forecasting. Prz. Elektrotech, R.93, no.2, 2017, pp.246-249.
  • [9] Box G.E.P.; Jenkins G.M.; Reinsel G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015.
  • [10] Tyass I.; Bellat A.; Raihani A.; Mansouri K.; Khalili T. Wind Speed Prediction Based on Seasonal ARIMA model. In Proceedings of the The International Conference on Energy and Green Computing (ICEGC’2021), Meknes, Morocco, 9—10 December 2021; 2022.
  • [11] Weron R. Modeling and Forecasting Electricity Loads and Prices; Wiley: Chichester, UK, 2006.
  • [12] Taylor J.W., Short-term load forecasting with exponentially weighted methods. IEEE Trans. Power Syst. 2012, 27, 458—464.
  • [13] Liu Y.; Sun Y.; Infield D.; Zhao Y.; Han S.; Yan J.: A hybrid forecasting method for wind power ramp based on orthogonal test and support vector machine (OT-SVM). IEEE Trans. Sustain. Energy 2017, 8, 451—457.
  • [14] Lee C.-M., Ko C.-N., Short-term load forecasting using lifting scheme and ARIMA models, Expert Syst. Appl. 2011, 38, 5902—5911.
  • [15] Nair K.R.; Vanitha V.; Jisma M.: Forecasting of wind speed using ANN, ARIMA and hybrid models. In Proceedings of the International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kannur, Kerala, India, 6—7 July 2017; pp. 170—175.
  • [16] Sahay KB.; Srivastava S.: Short-term wind speed forecasting of lelystad wind farm by using ANN algorithms. In Proceedings of the 2018 International Electrical Engineering Congress (iEECON), Krabi, Thailand, 7—9 March 2018.
  • [17] Khodayar M.; Wang J.: Spatio—temporal graph deep neural network for short-term wind speed forecasting. IEEE Trans. Sustain. Energy 2019, 10, 670—681.
  • [18] Xu A.; Yang, T.; Ji, J.; Gao, Y.; Gu, C. Application of cluster analysis in short-term wind power forecasting model. J. Eng. 2019, 2019, 5423—5426.
  • [19] Xu A.; Yang T.; Ji J.; Gao, Y.; Gu, C. Forecasting short-term wind speed based on IEWT-LSSVM model optimized by bird swarm algorithm. J. Eng. 2019, 7, 5423—5426.
  • [20] Popławski T.; Szeląg P.” Use the similarity of processes to predict the power output of wind turbines. Rynek Energii, 2011, 92, 103—107.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8569a64d-6aff-4d16-8a8e-38e1867b9d5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.