Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 25, No. 3 | 205--208
Tytuł artykułu

High peak power 16 μm InP-related quantum cascade laser

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper ∼16 μm-emitting multimode InP-related quantum cascade lasers are presented with the maximum operating temperature 373 K, peak and average optical power equal to 720 mW and 4.8 mW at 303 K, respectively, and the characteristic temperature (T0) 272 K. Two types of the lasers were fabricated and characterized: the lasers with a SiO2 layer left untouched in the area of the metal-free window on top of the ridge, and the lasers with the SiO2 layer removed from the metal-free window area. Dual-wavelength operation was obtained, at λ ∼ 15.6 μm (641 cm−1) and at λ ∼ 16.6 μm (602 cm−1) for lasers with SiO2 removed, while within the emission spectrum of the lasers with SiO2 left untouched only the former lasing peak was present. The parameters of these devices like threshold current, optical power and emission wavelength are compared. Lasers without the SiO2 layer showed ∼15% lower threshold current than these ones with the SiO2 layer. The optical powers for lasers without SiO2 layer were almost twice higher than for the lasers with the SiO2 layer on the top of the ridge.
Słowa kluczowe
Wydawca

Rocznik
Strony
205--208
Opis fizyczny
Bibliogr. 16 poz., il., wykr.
Twórcy
autor
  • Instytut Technologii Elektronowej, Al. Lotników 32/46, 02-668 Warsaw, Poland, szerling@ite.waw.pl
autor
  • Center for Quantum Devices, 2220 Campus Drive Cook Hall, Northwestern University, Evanston, IL 60208-0893, United States
autor
  • Center for Quantum Devices, 2220 Campus Drive Cook Hall, Northwestern University, Evanston, IL 60208-0893, United States
Bibliografia
  • [1] J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Quantum cascade laser, Science 264 (5158) (1994) 553–556.
  • [2] M. Razeghi, Q.Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, S. Slivken, Quantum cascade lasers: from tool to product, Opt. Express 23 (2015) 8462–8475.
  • [3] Y. Bai, S. Slivken, S.R. Darvish, M. Razeghi, Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency, Appl. Phys. Lett. 93 (2) (2008).
  • [4] M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Lu, S. Slivken, Recent advances in mid infrared (3–5 μm) quantum cascade lasers, Opt. Mater. Express 3 (2013) 1872–1884.
  • [5] Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, M. Razeghi, Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers, Appl. Phys. Lett. 99 (13) (2011) 131106.
  • [6] Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, M. Razeghi, Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation, Appl. Phys. Lett. 101 (25) (2012) 251121.
  • [7] Q. Lu, M. Razeghi, Recent advances in room temperature, high-power terahertz quantum cascade laser sources based on difference-frequency generation, Photonics 3 (3) (2016) 42.
  • [8] M. Rochat, D. Hofstetter, M. Beck, J. Faist, Long-wavelength (λ ≈ 16 μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition, Appl. Phys. Lett. 79 (2001) 4271–4273.
  • [9] A.N. Baranov, M. Bahriz, R. Teissier, Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15 μm, Opt. Express 24 (16) (2016) 18799–18806.
  • [10] M.S. Vitiello, G. Scalari, B. Williams, P. De Natale, Quantum cascade lasers: 20 years of challenges, Opt. Express 23 (4) (2015) 5167–5182.
  • [11] J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, S. Blaser, Bound-to-continuum and two-phonon resonance, quantum-cascade lasers for high duty cycle, high-temperature operation, IEEE J. Quantum Electron. 38 (6) (2002) 533–546.
  • [12] S. Slivken, Private communication.
  • [13] X. Huang, Y. Chiu, W.O. Charles, C. Gmachl, Ridge-width dependence of the threshold of long wavelength (λ ≈ 14 μm) quantum cascade lasers with sloped and vertical sidewalls, Opt. Express 20 (3) (2012) 2539–2547.
  • [14] C.E. Viana, A.N.R. da Silva, N.I. Morimoto, O. Bonnaud, Analysis of SiO2 thin films deposited by PECVD using an oxygen-TEOS-argon mixture, Braz. J. Phys. 31 (2) (2001), São Paulo.
  • [15] S.C. Deschmukh, E.S. Aydil, Investigation of low temperature SiO2 plasma enhanced chemical vapor deposition, J. Vac. Sci. Technol. B 14 (1996) 738.
  • [16] S.K. Ray, C.K. Maiti, S.K. Lahiri, N.B. Chafrabarti, Properties of silicon dioxide films deposited at low temperatures by microwave plasma enhanced decomposition of tetraethylorthosilicate, J. Vac. Sci. Technol. B 10 (1992) 1139.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-85690f38-6daf-48a1-9f75-913e363ffcf3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.