Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 67, iss. 1 | 133--142
Tytuł artykułu

Experimental and analytical investigation of point fixed corrugated metal sheets subjected to blast loading

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Besides the primary threats of a blast loading scenario, flying fragments from nonstructural elements could be a further threat to exposed humans. Point fixed corrugated metal sheets are often applied as facade elements. This paper focuses on the analysis of the dynamic bearing resistance and related pull-out behaviour of such elements. In a first step, the dynamic bearing capacity is investigated by an experimental study. Different sheet thicknesses and dimensions are examined for different loading levels using shock tube experiments. Based on the experimental results an engineering model is applied to predict the overall bearing capacity of the investigated corrugated metal sheet elements using mathematical optimisation methods. In a second step, the comparison to an analytical approach to quantify the prognostic capacity of the theoretical assessment method is addressed. Obtained results enable fast and effective quantification of expected damage effects and can be integrated into an overall risk and resilience analysis scheme.
Wydawca

Rocznik
Strony
133--142
Opis fizyczny
Bibliogr. 11 poz., rys., wykr.
Twórcy
autor
  • Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut Efringen-Kirchen, Germany
  • Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut Efringen-Kirchen, Germany
Bibliografia
  • 1. Assael M.J., Kakosimus K.E., Fires, explosions, and toxic gas dispersions. Effects calculation and risk analysis, CRC Press, Boca Raton, 2010.
  • 2. U.S. Army Corps of Engineers, UFC 3-340-02: Structures to resist the effects of accidental explosions, U.S. Department of Defense, Washington D.C., USA, 2008.
  • 3. Riedel W., Fischer K., Kranzer C., Erskine J., Cleave R., Hadden D., Romani M., Modeling and validation of a wall-window retrofit system under blast loading, Engineering Structures, 37: 235–245, 2012.
  • 4. Morison C.M., Dynamic response of walls and slabs by single-degree-of-freedom analysis – a critical review and revision, International Journal of Impact Engineering, 32(8): 1214– 1247, 2006.
  • 5. Krauthammer T., Modern protective structures, CRC Press, Boca Raton, 2008.
  • 6. Mays G.C., Smith P.D., Blast effects on buildings: Design of buildings to optimize resistance to blast loading, Thomas Telford Ltd, London, 2009.
  • 7. Biggs J., Introduction to structural dynamics, McGraw-Hill Book Company, New York, 1964.
  • 8. Mayrhofer C., Reinforced masonry walls under blast loading, International Journal of Mechanical Sciences, 44(6): 1067–1080, 2002.
  • 9. Stolz A., Fischer K. Roller C., Hauser S., Dynamic bearing capacity of ductile concrete plates under blast loading, International Journal of Impact Engineering, 69: 25– 38, 2014.
  • 10. Fischer K., Häring I., SDOF response model parameters from dynamic blast loading experiments, Engineering Structures, 31(8): 1677–1686, 2009.
  • 11. U.S. Army Corps of Engineers, UFC 3-340-02: Structures to resist the effects of accidental explosions, Departments of the Army, the Navy, and the Air Force, 2008.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8558f711-066a-4b8e-b09a-13a39bb90ab7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.