Warianty tytułu
Języki publikacji
Abstrakty
Synergies were demonstrated to exist in the kinematic, force and muscular domains, and their task-specificity and subject-specificity was also highlighted in literature. Despite that, no works have extracted synergies on specific grasp classes to analyze task-specific synergistic patterns. Moreover, only few studies focused on the combined analysis of kinematic, force and muscle synergies. The aim of this work was to (i) identify the grasp classes on which to extract task-specific synergies; (ii) extract subject-specific and task-specific synergies in the three domains and (iii) calculate the similarity of the extracted synergies among subjects and define average generalized synergies. 8 subjects were recruited to perform 21 reach-to-grasp tasks and the kinematics, contact forces and muscular activation of the hand were acquired. A LDA classifier allowed distinguishing power and precision grasp classes with an average accuracy of 89% considering kinematic data alone and combined kinematic, muscle and force data. Subject and task-specific synergies were therefore extracted on these two classes. Kinematic and force synergies were distinctive for the two classes, and highly similar among subjects, thus suggesting the possibility of adopting generalized synergies to describe grasp strategies. Conversely, muscle synergies did not differ particularly for the two classes. The combined analysis of force and kinematic data suggested that the hand posture may be somehow modulated by the optimal distribution of contact forces to perform stable grasps. Simulations with a virtual hand confirmed that stability significantly increased when grasps were generated by activating combined kinematic and force synergies rather than kinematic synergies only.
Czasopismo
Rocznik
Tom
Strony
218--230
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
- Department of Engineering, Research Unit of Advanced Robotics and Human-Centred Technologies, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, Roma, 00128, Italy, m.lapresa@unicampus.it
autor
- Department of Engineering, Research Unit of Advanced Robotics and Human-Centred Technologies, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, Roma, 00128, Italy
autor
- Department of Engineering, Research Unit of Advanced Robotics and Human-Centred Technologies, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, Roma, 00128, Italy
- Department of Engineering, Research Unit of Advanced Robotics and Human-Centred Technologies, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, Roma, 00128, Italy
autor
- Department of Engineering, Research Unit of Advanced Robotics and Human-Centred Technologies, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, Roma, 00128, Italy
autor
- Department of Engineering, Research Unit of Advanced Robotics and Human-Centred Technologies, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, Roma, 00128, Italy
Bibliografia
- [1] Bernstein N. The co-ordination and regulation of movements. Oxford, New York: Pergamon Press; 1967.
- [2] Lambert-Shirzad N, Van der Loos HM. On identifying kinematic and muscle synergies: a comparison of matrix factorization methods using experimental data from the healthy population. J Neurophysiol 2017;117(1):290-302.
- [3] Tresch MC, Cheung VC, d’Avella A. Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J Neurophysiol 2006;95(4):2199-212.
- [4] Portnova-Fahreeva AA, Rizzoglio F, Nisky I, Casadio M, Mussa-Ivaldi FA, Rombokas E. Linear and non-linear dimensionality-reduction techniques on full hand kinematics. Front Bioeng Biotechnol 2020;8:429.
- [5] Boe D, Portnova-Fahreeva AA, Sharma A, Rai V, Sie A, Preechayasomboon P, et al. Dimensionality reduction of human gait for prosthetic control. Front Bioeng Biotechnol 2021;9:724626.
- [6] Santello M, Flanders M, Soechting JF. Postural hand synergies for tool use. J Neurosci 1998;18(23):10105-15.
- [7] Della Santina C, Bianchi M, Averta G, Ciotti S, Arapi V, Fani S, et al. Postural hand synergies during environmental constraint exploitation. Front Neurorobotics 2017;11:41.
- [8] Gracia-Ibáñez V, Sancho-Bru JL, Vergara M, Jarque-Bou NJ, Roda-Sales A. Sharing of hand kinematic synergies across subjects in daily living activities. Sci Rep 2020;10(1):1-11.
- [9] Laffranchi M, Boccardo N, Traverso S, Lombardi L, Canepa M, Lince A, et al. The Hannes hand prosthesis replicates the key biological properties of the human hand. Science Robotics 2020;5(46):eabb0467.
- [10] Jarque-Bou NJ, Scano A, Atzori M, Müller H. Kinematic synergies of hand grasps: a comprehensive study on a large publicly available dataset. J NeuroEng Rehabil 2019;16(1):1-14.
- [11] Jarque-Bou NJ, Sancho-Bru JL, Vergara M. Synergy-based sensor reduction for recording the whole hand kinematics. Sensors 2021;21(4):1049.
- [12] Jarrassé N, Ribeiro AT, Sahbani A, Bachta W, Roby-Brami A. Analysis of hand synergies in healthy subjects during bimanual manipulation of various objects. J NeuroEng Rehabil 2014;11(1):1-11.
- [13] Kuo L-C, Chen S-W, Lin C-J, Lin W-J, Lin S-C, Su F-C. The force synergy of human digits in static and dynamic cylindrical grasps. PLoS One 2013;8(3):e60509.
- [14] Naceri A, Santello M, Moscatelli A, Ernst MO. Digit position and force synergies during unconstrained grasping. In: Human and robot hands. Springer; 2016, p. 29-40.
- [15] Starke J, Chatzilygeroudis K, Billard A, Asfour T. On force synergies in human grasping behavior. In: 2019 IEEE-RAS 19th international conference on humanoid robots. IEEE; 2019, p. 72-8.
- [16] Weiss EJ, Flanders M. Muscular and postural synergies of the human hand. J Neurophysiol 2004;92(1):523-35.
- [17] Tagliabue M, Ciancio AL, Brochier T, Eskiizmirliler S, Maier MA. Differences between kinematic synergies and muscle synergies during two-digit grasping. Front Human Neurosci 2015;9:165.
- [18] Castellini C, van der Smagt P. Evidence of muscle synergies during human grasping. Biol Cybernet 2013;107(2):233-45.
- [19] Patel V, Thukral P, Burns MK, Florescu I, Chandramouli R, Vinjamuri R. Hand grasping synergies as biometrics. Front Bioeng Biotechnol 2017;5:26.
- [20] Todorov E, Ghahramani Z. Analysis of the synergies underlying complex hand manipulation. In: The 26th annual international conference of the IEEE engineering in medicine and biology society, vol. 2. IEEE; 2004, p. 4637-40.
- [21] Santello M, Baud-Bovy G, Jörntell H. Neural bases of hand synergies. Front Comput Neurosci 2013;7:23.
- [22] Santello M, Soechting JF. Force synergies for multifingered grasping. Exp Brain Res 2000;133(4):457-67.
- [23] Cutkosky MR, et al. On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans Robot Autom 1989;5(3):269-79.
- [24] Bailey S. Principal component analysis with noisy and/or missing data. Publ Astron Soc Pac 2012;124(919):1015.
- [25] Light CM, Chappell PH, Kyberd PJ. Establishing a standardized clinical assessment tool of pathologic and prosthetic hand function: normative data, reliability, and validity. Arch Phys Med Rehabil 2002;83(6):776-83.
- [26] Cordella F, Zollo L, Salerno A, Accoto D, Guglielmelli E, Siciliano B. Human hand motion analysis and synthesis of optimal power grasps for a robotic hand. Int J Adv Robot Syst 2014;11(3):37.
- [27] Lapresa M, Zollo L, Cordella F. A user-friendly automatic toolbox for hand kinematic analysis, clinical assessment and postural synergies extraction. Front Bioeng Biotechnol 2022;10.
- [28] Brahmbhatt S, Ham C, Kemp CC, Hays J. Contactdb: Analyzing and predicting grasp contact via thermal imaging. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019, p. 8709-19.
- [29] Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, et al. European recommendations for surface electromyography. Roessingh Res Dev 1999;8(2):13-54.
- [30] Skogstad SAvD, Nymoen K, Høvin ME, Holm S, Jensenius AR. Filtering motion capture data for real-time applications. 2013.
- [31] Stetter BJ, Herzog M, Möhler F, Sell S, Stein T. Modularity in motor control: similarities in kinematic synergies across varying locomotion tasks. Front Sports Active Liv 2020;168.
- [32] Saito A, Tomita A, Ando R, Watanabe K, Akima H. Muscle synergies are consistent across level and uphill treadmill running. Sci Rep 2018;8(1):1-10.
- [33] Pale U, Atzori M, Müller H, Scano A. Variability of muscle synergies in hand grasps: Analysis of intra-and inter-session data. Sensors 2020;20(15):4297.
- [34] Sheng Y, Zeng J, Liu J, Liu H. Metric-based muscle synergy consistency for upper limb motor functions. IEEE Trans Instrum Meas 2021;71:1-11.
- [35] Scano A, Dardari L, Molteni F, Giberti H, Tosatti LM, d’Avella A. A comprehensive spatial mapping of muscle synergies in highly variable upper-limb movements of healthy subjects. Front Physiol 2019;10:1231.
- [36] Zhao K, Zhang Z, Wen H, Scano A. Intra-subject and inter-subject movement variability quantified with muscle synergies in upper-limb reaching movements. Biomimetics 2021;6(4):63.
- [37] Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans R Soc 2016;374(2065):20150202.
- [38] Jolliffe I. Principal Component Analysis. New York, NY: Springer; 2002.
- [39] Malvezzi M, Gioioso G, Salvietti G, Prattichizzo D, Bicchi A. SynGrasp: A MATLAB toolbox for grasp analysis of human and robotic hands. In: 2013 IEEE international conference on robotics and automation. IEEE; 2013, p. 1088-93.
- [40] Pozzi M, Achilli GM, Valigi MC, Malvezzi M. Modeling and simulation of robotic grasping in simulink through simscape multibody. Front Robotics AI 2022;9.
- [41] Seo NJ, Armstrong TJ. Investigation of grip force, normal force, contact area, hand size, and handle size for cylindrical handles. Human Fact 2008;50(5):734-44.
- [42] Lapresa M, Lauretti C, Scotto di Luzio F, Bressi F, Santacaterina F, Bravi M, et al. Development and validation of a system for the assessment and recovery of grip force control. Bioengineering 2023;10(1):63.
- [43] León B, Sancho-Bru JL, Jarque-Bou NJ, Morales A, Roa MA. Evaluation of human prehension using grasp quality measures. Int J Adv Robot Syst 2012;9(4):112.
- [44] Santello M, Flanders M, Soechting JF. Patterns of hand motion during grasping and the influence of sensory guidance. J Neurosci 2002;22(4):1426-35.
- [45] Liu Y, Jiang L, Yang D, Liu H. Analysis of hand and wrist postural synergies in tolerance grasping of various objects. PLoS One 2016;11(8):e0161772.
- [46] Thakur PH, Bastian AJ, Hsiao SS. Multidigit movement synergies of the human hand in an unconstrained haptic exploration task. J Neurosci 2008;28(6):1271-81.
- [47] Mason CR, Gomez JE, Ebner TJ. Hand synergies during reach-to-grasp. J Neurophysiol 2001;86(6):2896-910.
- [48] Scotto di Luzio F, Cordella F, Bravi M, Santacaterina F, Bressi F, Sterzi S, et al. Modification of hand muscular synergies in stroke patients after robot-aided rehabilitation. Appl Sci 2022;12(6):3146.
- [49] Matheus K, Dollar AM. Benchmarking grasping and manipulation: Properties of the objects of daily living. In: 2010 IEEE/RSJ international conference on intelligent robots and systems. IEEE; 2010, p. 5020-7.
- [50] Low J-H, Ang MH, Yeow C-H. Customizable soft pneumatic finger actuators for hand orthotic and prosthetic applications. In: 2015 IEEE international conference on rehabilitation robotics. IEEE; 2015, p. 380-5.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-85571e37-1a17-4073-8de9-edaa57ffdc60