Warianty tytułu
Języki publikacji
Abstrakty
The study was aimed to evaluate the impact of extraction solvent on the phenolic content, total flavonoids content, and the antioxidant activities of acetonic, methanolic, and aqueous extracts of two lichen species: Evernia prunastri and Ramalina lacera collected from trunks of Argania spinosa using the ultrasound assistance extraction. Various in vitro antioxidant assays were utilized such as 2,2-diphenly-picryly-hydroxyl free radical (DPPH) assay, and ferric reducing antioxidant power (FRAP) assay. All tested samples exhibited a good antioxidant activity, for the DPPH assay, the inhibition percentage ranged from 85±0.2% to 27±0.01%, the phenolic content ranged from 13.17±0.5 mgGAE/g DW to 3.31±0.3 mgGAW/g DW, and flavonoids ranged from 5.84±0.03 mgRE/g DW to 0.01±0.03 mgRE/g DW. This study demonstrates that the extraction solvent has a significant influence on lichens phenolic compounds and on their antioxidant activity, also showed that flavonoids contents are significantly correlated to antioxidant activity of studies lichens; moreover, it shows that ultrasound extraction in a good method to extract the lichens compound. This study suggests that lichens Ramalina lacera and Evernia prunastri could be utilized as natural antioxidant source.
Słowa kluczowe
Rocznik
Tom
Strony
183--190
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Laboratory of Plants Chemistry, Organic and Bio-organic Synthesis. Faculty of Sciences, Mohammed-V University, Rabat, Morocco, amalnaama29@gmail.com
- The National Agency for Medicinal and Aromatic Plants Laboratory of Phyto-biotechnologie, Taounate, Morocco
autor
- Laboratory of Plants Chemistry, Organic and Bio-organic Synthesis. Faculty of Sciences, Mohammed-V University, Rabat, Morocco
- The National Agency for Medicinal and Aromatic Plants Laboratory of Phyto-biotechnologie, Taounate, Morocco
autor
- Laboratory of Plants Chemistry, Organic and Bio-organic Synthesis. Faculty of Sciences, Mohammed-V University, Rabat, Morocco
autor
- Laboratory of Plants Chemistry, Organic and Bio-organic Synthesis. Faculty of Sciences, Mohammed-V University, Rabat, Morocco
Bibliografia
- 1. Adenubi O.T., Famuyide I.M., McGaw L.J., Eloff J.N. 2022. Lichens: An update on their ethnopharmacological uses and potential as sources of drug leads. Journal of Ethnopharmacology 298, 115657. https://doi.org/10.1016/j.jep.2022.115657
- 2. Ansari M.Y., Ahmad N., Haqqi T.M. 2020. Oxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenols. Biomedicine & Pharmacotherapy 129, 110452. https://doi.org/10.1016/j.biopha.2020.110452
- 3. Atanasov A.G., Zotchev S.B., Dirsch V.M., Supuran C.T. 2021. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 20, 200–216. https://doi.org/10.1038/s41573-020-00114-z
- 4. Ben El Hadj Ali I., Bahri R., Chaouachi M., Boussaïd M., Harzallah-Skhiri F. 2014. Phenolic content, antioxidant and allelopathic activities of various extracts of Thymus numidicus Poir. organs. Industrial Crops and Products 62, 188–195. https://doi.org/10.1016/j.indcrop.2014.08.021
- 5. Ben El Hadj Ali I., Tajini.F, Boulila A., Jebri M.-A., Boussaid M., Messaoud C., Sebaï H. 2020. Bioactive compounds from Tunisian Pelargonium graveolens (L’Hér.) essential oils and extracts: α-amylase and acethylcholinesterase inhibitory and antioxidant, antibacterial and phytotoxic activities. Industrial Crops and Products 158, 112951. https://doi.org/10.1016/j.indcrop.2020.112951
- 6. Emsen B., Sadi G., Bostanci A., Gursoy N., Emsen A., Aslan A. 2021. Evaluation of the biological activities of olivetoric acid, a lichen-derived molecule, in human hepatocellular carcinoma cells. Rend Fis Acc Lincei 32, 135–148. https://doi.org/10.1007/s12210-021-00976-4
- 7. Fernández-Moriano C., Gómez-Serranillos M.P., Crespo A. 2016. Antioxidant potential of lichen species and their secondary metabolites. A systematic review. Pharmaceutical Biology 54, 1–17. https://doi.org/10.3109/13880209.2014.1003354
- 8. Gandhi A.D., Umamahesh K., Sathiyaraj S., Suriyakala G., Velmurugan R., Al Farraj D.A., Gawwad MRA, Murugan K, Babujanarthanam R, Saranya R. 2022. Isolation of bioactive compounds from lichen Parmelia sulcata and evaluation of antimicrobial property. Journal of Infection and Public Health 15, 491–497. https://doi.org/10.1016/j.jiph.2021.10.014
- 9. Gulluce M., Aslan A., Sokmen M., Sahin F., Adiguzel A., Agar G., Sokmen A. 2006. Screening the antioxidant and antimicrobial properties of the lichens Parmelia saxatilis, Platismatia glauca, Ramalina pollinaria, Ramalina polymorpha and Umbilicaria nylanderiana. Phytomedicine 13, 515–521. https://doi.org/10.1016/j.phymed.2005.09.008
- 10. Khairan K., Idroes R., Tallei T.E., Nasim M.J., Jacob C. 2021. Bioactive Compounds from Medicinal Plants and their Possible Effect as Therapeutic Agents against COVID-19: A Review. Current Nutrition & Food Science 17, 621–633. https://doi.org/10.2174/1573401317999210112201439
- 11. Kocira A., Świeca M., Kocira S., Złotek U., Jakubczyk A. 2018. Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi Journal of Biological Sciences 25, 563–571. https://doi.org/10.1016/j.sjbs.2016.01.039
- 12. Metrouh-Amir H., Duarte C.M.M., Maiza F. 2015. Solvent effect on total phenolic contents, antioxidant, and antibacterial activities of Matricaria pubescens. Industrial Crops and Products 67, 249–256. https://doi.org/10.1016/j.indcrop.2015.01.049
- 13. Mohammadi M., Zambare V., Malek L., Gottardo C., Suntres Z., Christopher L. 2020. Lichenochemicals: extraction, purification, characterization, and application as potential anticancer agents. Expert Opinion on Drug Discovery 15, 575–601. https://doi.org/10.1080/17460441.2020.1730325
- 14. Msanda F., Mayad E.H., Furze J.N. 2021. Floristic biodiversity, biogeographical significance, and importance of Morocco’s Arganeraie Biosphere Reserve. Environ Sci Pollut Res 28, 64156–64165. https://doi.org/10.1007/s11356-020-11936-0
- 15. Nayaka S., Haridas B. 2020. Bioactive Secondary Metabolites from Lichens. In Plant Metabolites: Methods, Applications and Prospects. ST Sukumaran, S Sugathan, and S Abdulhameed (eds.),. Springer, Singapore, pp. 255–290. https://doi.org/10.1007/978-981-15-5136-9_12
- 16. Newman D.J., Cragg G.M., I. Kingston D.G. 2008. Chapter 8 - Natural Products as Pharmaceuticals and Sources for Lead Structures. In The Practice of Medicinal Chemistry (Third Edition). CG Wermuth (ed.), Academic Press, New York, pp. 159–186. https://doi.org/10.1016/B978-0-12-374194-3.00008-1
- 17. Nguyen T.T.H., Dinh M.H., Chi H.T., Wang S.-L., Nguyen Q., Tran T.D., Nguyen A.D. 2019. Antioxidant and cytotoxic activity of lichens collected from Bidoup Nui Ba National Park, Vietnam. Res Chem Intermed 45, 33–49. https://doi.org/10.1007/s11164-018-3628-1
- 18. Odabasoglu F., Aslan A., Cakir A., Suleyman H., Karagoz Y., Halici M., Bayir Y. 2004. Comparison of antioxidant activity and phenolic content of three lichen species. Phytotherapy Research 18, 938–941. https://doi.org/10.1002/ptr.1488
- 19. Pisoschi A.M., Pop A., Iordache F., Stanca L., Pre-doi G., Serban A.I. 2021. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. European Journal of Medicinal Chemistry 209, 112891. https://doi.org/10.1016/j.ejmech.2020.112891
- 20. Ranković B., Kosanić M. 2021. Chapter 12 - Biotechnological substances in lichens. In Natural Bioactive Compounds. R p. Sinha and D-P Häder (eds.), Academic Press, pp. 249–265. https://doi.org/10.1016/B978-0-12-820655-3.00012-4
- 21. Ranković B., Kosanić M., Stanojković T., Vasiljević P., Manojlović N. 2012. Biological Activities of Toninia candida and Usnea barbata Together with Their Norstictic Acid and Usnic Acid Constituents. International Journal of Molecular Sciences 13, 14707–14722. https://doi.org/10.3390/ijms131114707
- 22.Rodríguez-Roque M.J., Soliva-Fortuny R., Martín-Belloso O. 2017. Methods for Determining the Antioxidant Capacity of Food Constituents. In Fruit and Vegetable Phytochemicals. pp. 803–816. https://doi.org/10.1002/9781119158042.ch36
- 23. Siripatrawan U., Harte B.R. 2010. Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids 24, 770–775. https://doi.org/10.1016/j.foodhyd.2010.04.003
- 24. Solárová Z., Liskova A., Samec M., Kubatka P., Büsselberg D., Solár P. 2020. Anticancer Potential of Lichens’ Secondary Metabolites. Biomolecules 10, 87. https://doi.org/10.3390/biom10010087
- 25. Yusuf M. 2020. An Overview on Lichen’s Morphology, Chemistry of Derived Products, and Current Scenario. In Lichen-Derived Products. pp. 1–26. https://doi.org/10.1002/9781119593249.ch1
- 26. Zhao Y., Wang M., Xu B. 2021. A comprehensive review on secondary metabolites and health-promoting effects of edible lichen. Journal of Functional Foods 80, 104283. https://doi.org/10.1016/j.jff.2020.104283
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-854d3cd3-fe40-4544-a5d9-a31f3e1f4659