Czasopismo
2021
|
Vol. 69, no. 6
|
2377--2391
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Himalayan glaciers are retreating, and glacial lakes are evolving and proliferating as a result of climate change. Glacier retreat marks in the formation and expansion, and sometimes outburst of moraine-dammed lakes. Lato Lake is one of the high-altitude and unexplored glacial lakes upstream of Gya-Miru village in the Leh-Ladakh region. This study is the first of its kind to assess hydrogeochemistry (HCO3−, SO4 2−, NO3 −, Cl−, F−, Ca2+, Mg2+, Na+, and K+) and studying the dynamics of a moraine-dammed lake in the Ladakh Himalayas. We observed substantial expansion of Lato Lake over the past 50 years between 1969 and 2019, and the areas of the lake have increased while the glacier area is reduced by 16.4% and 4.15%, respectively. The pH values ranging from 7.6 to 8.1 show slightly alkaline. HCO3 −, Ca2+, and SO4 2− were the most dominant ions during the study period 2018–19. The high (Ca2+ + Mg2+) and a low (Na+ + K+) ratio to the total cations show that Lato Lake receives ions from rock weathering, primarily from carbonate rocks. Gibbs and Na-Mixing plot also support the hydrogeochemistry of lake water was primarily controlled by rock weathering. HYSPILT backward trajectory model suggested that atmospheric input mainly originated from the seawater vapor transported by the summer monsoonal and westerly circulation systems. Results show that the lake has a substantial impact on the long-range transport of ocean water relative to local interferences.
Czasopismo
Rocznik
Tom
Strony
2377--2391
Opis fizyczny
Bibliogr. 81 poz.
Twórcy
autor
- School of Environmental Science, Jawaharlal Nehru University, New Delhi 110067, India
autor
- School of Environmental Science, Jawaharlal Nehru University, New Delhi 110067, India, alrjnu@gmail.com
autor
- School of Environmental Science, Jawaharlal Nehru University, New Delhi 110067, India
- School of Environmental Science, Jawaharlal Nehru University, New Delhi 110067, India
autor
- School of Environmental Science, Jawaharlal Nehru University, New Delhi 110067, India
autor
- School of Environmental Science, Jawaharlal Nehru University, New Delhi 110067, India
autor
- School of Environmental Science, Jawaharlal Nehru University, New Delhi 110067, India
Bibliografia
- 1. Ahmad T, Khanna PP, Chakrapani GJ, Balakrishnan S (1998) Geochemical characteristics of water and sediment of the Indus River, Trans-Himalaya, India: constraints on weathering and erosion. J Asian Earth Sci 16(2–3):333–346. https://doi.org/10.1016/S0743-9547(98)00016-6
- 2. Allen SK, Linsbauer A, Randhawa SS, Huggel C, Rana P, Kumari A (2016) Glacial lake outburst flood risk in Himachal Pradesh, India: an integrative and anticipatory approach considering current and future threats. Nat Hazards 84(3):1741–1763. https://doi.org/10.1007/s11069-016-2511-x
- 3. Allen S, Sattar A, King O, Zhang G, Bhattacharya A, Yao T, Bolch T (2021) Glacial lake outburst flood hazard under current and future conditions: first insights from a transboundary Himalayan basin. Nat Hazards and Earth Syst Sci Discuss. https://doi.org/10.5194/nhess-2021-167
- 4. Anshumali RAL (2007) Seasonal variation in the major ion chemistry of Pandoh Lake, Mandi District, Himachal Pradesh, India. Appl Geochem 22:1736–1747. https://doi.org/10.1016/j.apgeochem.2007.03.045
- 5. APHA (2005) Standard methods for the examination of water and wastewater. APHA Washington DC, USA
- 6. Azam MF, Kargel JS, Shea JM, Nepal S, Haritashya UK, Srivastava S, Bahuguna IM (2021) Glaciohydrology of the Himalaya-Karakoram. Science. https://doi.org/10.1126/science.abf3668
- 7. Bolch T, Shea JM, Liu S, Azam FM, Gao Y, Gruber S, Zhang Y (2019) Status and change of the cryosphere in the extended Hindu Kush Himalaya region. The Hindu Kush Himalaya Assessment. Springer, Cham, pp 209–255
- 8. Brown G, Sharp M, Tranter M (1996) Subglacial chemical erosion: seasonal variations in solute provenance, Haut Glacier D’ArollaD’Arolla, Valais, Switzerland. Ann Glaciol 22:25–31. https://doi.org/10.3189/1996AoG22-1-25-31
- 9. Cao Y, Tang C, Song X, Liu C (2015) Major ion chemistry, chemical weathering, and CO2 consumption in the Songhua River basin, Northeast China. Environ Earth Sci 73(11):7505–7516. https://doi.org/10.1007/s12665-014-3921-2
- 10. Cao Y, Tang C, Cao G, Wang X (2016) Hydrochemical zoning: natural and anthropogenic origins of the major elements in the surface water of Taizi River Basin, Northeast China. Environ Earth Sci 75(9):811. https://doi.org/10.1007/s12665-016-5469-9
- 11. Dash P, Punia M (2019) Governance and disaster: analysis of land use policy with reference to Uttarakhand flood 2013, India. Int J Disaster Risk Reduct 36:101090. https://doi.org/10.1016/j.ijdrr.2019.101090
- 12. Dean JF, Billett MF, Baxter R, Dinsmore KJ, Lessels JS, Street LE, Wookey PA (2016) Biogeochemistry of “pristine” freshwater stream and lake systems in the western Canadian Arctic. Biogeochemistry 130(3):191–213. https://doi.org/10.1007/s10533-016-0252-2
- 13. Deka JP, Baruah B, Singh S, Chaudhury R, Prakash A, Bhattacharyya P, Kumar M (2015a) Tracing phosphorous distributions in the surficial sediments of two eastern Himalayan high altitude lakes through sequential extraction, multivariate and HYSPLIT back trajectory analyses. Environ Earth Sci 73(11):7617–7629. https://doi.org/10.1007/s12665-014-3931-0
- 14. Deka JP, Tayeng G, Singh S, Hoque RR, Prakash A, Kumar M (2015b) Source and seasonal variation in the major ion chemistry of two eastern Himalayan high altitude lakes. India. Arab J Geosci 8(12):10597–10610. https://doi.org/10.1007/s12517-015-1964-7
- 15. Diéguez MC, Bencardino M, García PE, D’Amore F, Castagna J, De Simone F, Sprovieri F (2019) A multi-year record of atmospheric mercury species at a background mountain station in Andean Patagonia (Argentina): temporal trends and meteorological influence. Atmos Environ 214:116819. https://doi.org/10.1016/j.atmosenv.2019.116819
- 16. Fujita K, Sakai A, Nuimura T, Yamaguchi S, Sharma RR (2009) Recent changes in Imja Glacial Lake and its damming moraine in the Nepal Himalaya revealed by in situ surveys and multi-temporal ASTER imagery. Environ Res Lett 4(4):045205. https://doi.org/10.1088/17489326/4/4/045205/meta
- 17. Fujita K, Sakai A, Takenaka S, Nuimura T, Surazakov AB, Sawagaki T, Yamanokuchi T (2013) Potential flood volume of Himalayan glacial lakes. Nat Hazard 13(7):1827–1839. https://doi.org/10.5194/nhess-13-1827-2013
- 18. Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170(3962):1088–1090. https://doi.org/10.1126/science.170.3962.1088
- 19. Gurung DR, Khanal NR, Bajracharya SR, Tsering K, Joshi S, Tshering P, Penjor T (2017) Lemthang Tsho glacial Lake outburst flood (GLOF) in Bhutan: cause and impact. Geoenviron Disasters 4(1):1–13. https://doi.org/10.1186/s40677-017-0080-2
- 20. Gurung S, Gurung A, Sharma CM, Jüttner I, Tripathee L, Bajracharya RM, Guo J (2018) Hydrochemistry of Lake Rara: a high mountain lake in western Nepal. Lakes Reserv Res Manag 23(2):87–97. https://doi.org/10.1111/lre.12218
- 21. Hock R, Rasul G, Adler C, Cáceres B, Gruber S, Hirabayashi Y, & Zhang Y (2019) High mountain areas, 131–202.
- 22. Hugonnet R, McNabb R, Berthier E, Menounos B, Nuth C, Girod L, Kääb A (2021) Accelerated global glacier mass loss in the early twenty-first century. Nature 592(7856):726–731. https://doi.org/10.1038/s41586-021-03436-z
- 23. International Centre for Integrated Mountain Development (2011) Glacial lakes and glacial lake outburst floods in Nepal. ICIMOD, Kathmandu, Nepal, p 99
- 24. Jiang L, Yao Z, Liu Z, Wang R, Wu S (2015) Hydrochemistry and its controlling factors of rivers in the source region of the Yangtze River on the Tibetan Plateau. J Geochem Explor 155:76–83. https://doi.org/10.1016/j.gexplo.2015.04.009
- 25. Kaphle B, Wang JB, Kai JL, Lyu XM, Paudayal KN, Adhikari S (2021) Hydrochemistry of Rara Lake: a Ramsar lake from the southern slope of the central Himalayas, Nepal. J Mt Sci 18(1):141–158. https://doi.org/10.1007/s11629-019-5910-0
- 26. Karlsson JM, Jaramillo F, Destouni G (2015) Hydro-climatic and lake change patterns in Arctic permafrost and non-permafrost areas. J Hydrol 529:134–145. https://doi.org/10.1016/j.jhydrol.2015.07.005
- 27. Khadka UR, Ramanathan AL (2013) Major ion composition and seasonal variation in the Lesser Himalayan lake: case of Begnas Lake of the Pokhara Valley, Nepal. Arab J Geosci 6(11):4191–4206. https://doi.org/10.1007/s12517-012-0677-4
- 28. Khadka UR, Ramanathan AL (2020) Hydrogeochemical analysis of Phewa lake: a lesser Himalayan lake in the Pokhara Valley, Nepal. Environ Nat Resour J 19(1):68–83. https://doi.org/10.32526/ennrj/19/2020083
- 29. Kosek K, Ruman M (2021) Arctic freshwater environment altered by the accumulation of commonly determined and potentially new POPs. Water 13(13):1739. https://doi.org/10.3390/w13131739
- 30. Kumar R, Kumar R, Singh S, Singh A, Bhardwaj A, Chaudhary H (2019) Hydro-geochemical characteristics of glacial meltwater from Naradu Glacier catchment, Western Himalaya. Environ Earth Sci 78(24):1–12. https://doi.org/10.1007/s12665-019-8687-0
- 31. Kumar O, Ramanathan AL, Bakke J, Kotlia BS, Shrivastava JP, Kumar P, Kumar P (2020) Role of Indian summer monsoon and Westerlies on glacier variability in the Himalaya and East Africa during late quaternary: review and new data. Earth Sci Rev. https://doi.org/10.1016/j.earscirev.2020.103431
- 32. Kumar B, Murugesh Prabhu TS (2012) Impacts of climate change: Glacial Lake outburst floods (GLOFs). Climate Change in Sikkim Patterns, Impacts and Initiatives. Inf Public Relat Dep, Gov Sikkim, Gangtok, 81–102.
- 33. Li Z, Xu J, Shilpakar RL, Ma X (2014) Mapping wetland cover in the greater Himalayan region: a hybrid method combining multispectral and ecological characteristics. Environ Earth Sci 71(3):1083–1094. https://doi.org/10.1007/s12665-013-2512-y
- 34. Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci Total Environ 313(1–3):77–89. https://doi.org/10.1016/s0048-9697(02)00683-6
- 35. Majeed U, Rashid I, Sattar A, Allen S, Stoffel M, Nüsser M, Schmidt S (2021) Recession of gya glacier and the 2014 glacial lake outburst flood in the Trans-Himalayan region of Ladakh, India. Sci Total Environ 756:144008. https://doi.org/10.1016/j.scitotenv.2020.144008
- 36. Nüsser M, Schmidt S, Dame J (2012) Irrigation and development in the Upper Indus Basin: characteristics and recent changes of a socio-hydrological system in Central Ladakh, India. Mt Res Dev 32(1):51–61. https://doi.org/10.1659/MRD-JOURNAL-D-11-00091.1
- 37. Nüsser M, Dame J, Parveen S, Kraus B, Baghel R, Schmidt S (2019) Cryosphere-fed irrigation networks in the northwestern Himalaya: precarious livelihoods and adaptation strategies under the impact of climate change. Mt Res Dev 39(2):R1–R11. https://doi.org/10.1659/MRD-JOURNAL-D-18-00072.1
- 38. Ollivier P, Hamelin B, Radakovitch O (2010) Seasonal variations of physical and chemical erosion: A three-year survey of the Rhone River (France). Geochimica et Cosmochimica Acta 74(3):907–927
- 39. Osmaston, H. (2001). The geology, geomorphology and Quaternary history of Zanskar. Himalayan Buddhist Villages, 1–36.
- 40. Pacheco Castro R, Pacheco Ávila J, Ye M, Cabrera Sansores A (2018) Groundwater quality: analysis of its temporal and spatial variability in a Karst Aquifer. Groundwater 56(1):62–72. https://doi.org/10.1111/gwat.12546
- 41. Pandey P, Ali SN, Ray PKC (2021) Glacier-glacial lake interactions and glacial lake development in the central Himalaya, India (1994–2017). J Earth Sci. https://doi.org/10.1007/s12583-020-1056-9
- 42. Pant RR, Zhang F, Rehman FU, Wang G, Ye M, Zeng C, Tang H (2018) Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal. Sci Total Environ 622–623:770–782. https://doi.org/10.1016/j.scitotenv.2017.12.063
- 43. Patel LK, Sharma P, Laluraj CM, Thamban M, Singh A, Ravindra R (2017) A geospatial analysis of Samudra Tapu and Gepang Gath glacial lakes in the Chandra Basin, Western Himalaya. Nat Hazards 86(3):1275–1290. https://doi.org/10.1007/s11069-017-2743-4
- 44. Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. EOS Trans Am Geophys Union 25(6):914–928. https://doi.org/10.1029/TR025i006p00914
- 45. Potapowicz J, Szumińska D, Szopińska M, Bialik RJ, Machowiak K, Chmiel S, Polkowska Ż (2020) Seashore sediment and water chemistry at the Admiralty Bay (King George Island, Maritime Antarctica)–Geochemical analysis and correlations between the concentrations of chemical species. Mar Pollut Bull 152:110888. https://doi.org/10.1016/j.marpolbul.2020.110888
- 46. Prakash ANJAL (2020) Retreating glaciers and water flows in the Himalayas: implications for governance. Obs Res Found, New Delhi, India 400:1–14
- 47. Pritchard HD (2019) Asia’s shrinking glaciers protect large populations from drought stress. Nature 569(7758):649–654. https://doi.org/10.1038/s41586-019-1240-1
- 48. Racoviteanu A, Paul F, Raup B, Khalsa S, Armstrong R (2009) Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 global land ice measurements from space (GLIMS) workshop, Boulder, Colorado, USA. Ann Glaciol 50(53):53–69. https://doi.org/10.3189/172756410790595804
- 49. Roberts KE, Lamoureux SF, Kyser TK, Muir DCG, Lafrenière MJ, Iqaluk D, Normandeau A (2017) Climate and permafrost effects on the chemistry and ecosystems of High Arctic Lakes. Sci Rep 7(1):1–8. https://doi.org/10.1038/s41598-017-13658-9
- 50. Rolph G, Stein A, Stunder B (2017) Real-time environmental applications and display sYstem: READY. Environ Model Softw 95:210–228. https://doi.org/10.1016/j.envsoft.2017.06.025
- 51. Rounce DR, Hock R, Shean DE (2020) Glacier mass change in high mountain Asia through 2100 using the open-source python glacier evolution model (PyGEM). Front Earth Sci 7:331. https://doi.org/10.3389/feart.2019.00331
- 52. Ruman M, Kosek K, Koziol K, Ciepły M, Kozak-Dylewska K, Polkowska Ż (2021) A High-Arctic flow-through lake system hydrochemical changes: revvatnet, southwestern Svalbard (years 2010–2018). Chemosphere 275:130046. https://doi.org/10.1016/j.chemosphere.2021.130046
- 53. Sakai A (2012) Glacial lakes in the Himalayas: a review on formation and expansion processes. Glob Environ Res 16(2011):23–30
- 54. Salerno F, Rogora M, Balestrini R, Lami A, Tartari GA, Thakuri S, Tartari G (2016) Glacier melting increases the solute concentrations of Himalayan glacial lakes. Environ Sci Technol 50(17):9150–9160. https://doi.org/10.1021/acs.est.6b02735
- 55. Schild A (2008) ICIMOD’s ICIMOD’s position on climate change and mountain systems. Mt Res Dev 28(3/4):328–331. https://doi.org/10.1659/mrd.mp009
- 56. Schlup M, Carter A, Cosca M, Steck A (2003) Exhumation history of eastern Ladakh revealed by 40 Ar/ 39 Ar and fission-track ages: the Indus River-Tso Morari transect, NW Himalaya. J Geol Soc 160(3):385–399. https://doi.org/10.1144/0016-764902-084
- 57. Schmidt S, Nüsser M, Baghel R, Dame J (2020) Cryosphere hazards in Ladakh: the 2014 Gya glacial lake outburst flood and its implications for risk assessment. Nat Hazards 104(3):2071–2095. https://doi.org/10.1007/s11069-020-04262-8
- 58. Sharma P, Ramanathan AL, Pottakkal J (2013) Study of solute sources and evolution of hydrogeochemical processes of the Chhota Shigri Glacier meltwaters, Himachal Himalaya, India. Hydrol Sci J 58(5):1128–1143. https://doi.org/10.1080/02626667.2013.802092
- 59. Shugar DH, Burr A, Haritashya UK, Kargel JS, Watson CS, Kennedy MC, Strattman K (2020) Rapid worldwide growth of glacial lakes since 1990. Nat Clim Chang 10(10):939–945. https://doi.org/10.1038/s41558-020-0855-4
- 60. Shugar DH, Jacquemart M, Shean D, Bhushan S, Upadhyay K, Sattar A, Westoby MJ (2021) A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science. https://doi.org/10.1126/science.abh4455
- 61. Shukla A, Garg PK, Srivastava S (2018) Evolution of glacial and high-altitude lakes in the Sikkim, Eastern Himalaya over the past four decades (1975–2017). Front Environ Sci 6:81. https://doi.org/10.3389/fenvs.2018.00081
- 62. Singh KP, Malik A, Mohan D, Sinha S (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)-A case study. Water Res 38(18):3980–3992. https://doi.org/10.1016/j.watres.2004.06.011
- 63. Singh VB, Ramanathan AL, Pottakkal JG, Sharma P, Linda A, Azam MF, Chatterjee C (2012) Chemical characterization of meltwater draining from Gangotri glacier, Garhwal Himalaya, India. J Earth Syst Sci 121(3):625–636. https://doi.org/10.1007/s12040-012-0177-7
- 64. Singh VB, Ramanathan AL, Pottakkal JG, Kumar M (2014a) Seasonal Variation of Solute and Suspended Sediment Load in Gangotri Glacier Meltwater, Central Himalaya, India. J Asian Earth Sci 79:224–234. https://doi.org/10.1016/j.jseaes.2013.09.010
- 65. Singh Y, Khattar JIS, Singh DP, Rahi P, Gulati A (2014) Limnology and cyanobacterial diversity of high altitude lakes of Lahaul-Spiti in Himachal Pradesh, India. J Biosci 39(4):643–657
- 66. Singh VB, Ramanathan AL, Mandal A (2016) Hydrogeochemistry of high-altitude lake: a case study of the Chandra Tal, Western Himalaya. India Arab J Geosci 9(4):308. https://doi.org/10.1007/s12517-016-2358-1
- 67. Slukovskii Z, Dauvalter V, Guzeva A, Denisov D, Cherepanov A, Siroezhko E (2020) The hydrochemistry and recent sediment geochemistry of small lakes of Murmansk, Arctic Zone of Russia. Water 12(4):1130. https://doi.org/10.3390/w12041130
- 68. Soheb M, Ramanathan A, Angchuk T, Mandal A, Kumar N, Lotus S (2020) Mass-balance observation, reconstruction, and sensitivity of Stok glacier, Ladakh region, India, between 1978 and 2019. J Glaciol 66(258):627–642. https://doi.org/10.1017/jog.2020.34
- 69. Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Amer Meteor Soc 96:2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1
- 70. Steingruber SM, Bernasconi SM, Valenti G (2020) Climate change-induced changes in the chemistry of a high-altitude mountain lake in the central alps. Aquat Geochem. https://doi.org/10.1007/s10498-020-09388-6
- 71. Stumm W, Morgan JJ (1981) Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. Wiley-Interscience Publication, p 780
- 72. Sun H, Han J, Li D, Zhang S, Lu X (2010) Chemical weathering inferred from riverine water chemistry in the lower Xijiang basin, South China. Sci Total Environ 408(20):4749–4760. https://doi.org/10.1016/j.scitotenv.2010.06.007
- 73. Szopińska M, Szumińska D, Bialik RJ, Chmiel S, Plenzler J, Polkowska Ż (2018) Impact of a newly-formed periglacial environment and other factors on freshwater chemistry at the western shore of Admiralty Bay in the summer of 2016 (King George Island, Maritime Antarctica). Sci Total Environ 613:619–634. https://doi.org/10.1016/j.scitotenv.2017.09.060
- 74. Thakuri S, Salerno F, Bolch T, Guyennon N, Tartari G (2016) Factors controlling the accelerated expansion of Imja Lake, Mount Everest region, Nepal. Annals of Glaciol 57(71):245–257. https://doi.org/10.3189/2016AoG71A063
- 75. Veh G, Korup O, von Specht S, Roessner S, Walz A (2019) Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya. Nat Climate Change 9(5):379–383. https://doi.org/10.1038/s41558-019-0437-5
- 76. Veh G, Korup O, Walz A (2020) Hazard from Himalayan glacier lake outburst floods. Proc Natl Acad Sci 117(2):907–912. https://doi.org/10.1073/pnas.1914898117
- 77. Wadham JL, Hodson AJ, Tranter M, Dowdeswell JA (1998) The hydrochemistry of meltwaters draining a polythermal-based, high Arctic glacier, south Svalbard: i the ablation season. Hydrol Process 12(12):1825–1849. https://doi.org/10.1002/(SICI)10991085(19981015)12:12%3C1825:AIDHYP669%3E3.3.CO;2-I
- 78. Wadham JL, Cooper RJ, Tranter M, Hodgkins R (2001) Enhancement of glacial solute fluxes in the pro-glacial zone of a polythermal glacier. J Glaciol 47(158):378–386. https://doi.org/10.3189/172756501781832188
- 79. Woelders L, Lenaerts JT, Hagemans K, Akkerman K, van Hoof TB, Hoek WZ (2018) Recent climate warming drives ecological change in a remote high-Arctic lake. Sci Rep 8(1):1–8. https://doi.org/10.1038/s41598-018-25148-7
- 80. Zhang S-R, Lu XX, Higgitt DL, Chen C-TA, Sun H-G, Han J-T (2007) Water chemistry of the Zhujiang (Pearl River): Natural processes and anthropogenic influences. J Geophys Res 112(F1):F01011. https://doi.org/10.1029/2006JF000493
- 81. Zhang Z, Jia W, Zhu G, Ma X, Xu X, Yuan R, Xiong H (2020) Hydrochemical characteristics and ion sources of precipitation in the upper reaches of the shiyang river. China Water 12(5):1442. https://doi.org/10.3390/w12051442
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-854109fc-0680-46ba-890e-c4069eaddcb7