Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the design of flexible interfaces between finite element (FE) codes and solvers of linear equations. The main goal of the design is to allow for coupling FE codes that use different formulations (linear, non-linear, time dependent, stationary, scalar, vector) and different approximation techniques (different element types, different approximation spaces – linear, higher order, continuous, discontinuous, h- and hp-adaptive) with solvers of linear equations that use different storage formats for sparse system matrices and different solution strategies (such as, e.g., reordering of degrees of freedom (DOFs), multigrid solution or preconditioning for iterative solvers, frontal and multi-frontal strategies for direct solvers). Suitable data structures associated with the design are presented and examples of algorithms related to the interface between the FEM codes and linear solvers, together with their execution time and performance estimates, are described.
Rocznik
Tom
Strony
3-17
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- AGH University of Science and Technology al. Mickiewicza 30, 30-059 Kraków, pobanas@cyf-kr.edu.pl
autor
- AGH University of Science and Technology al. Mickiewicza 30, 30-059 Kraków
Bibliografia
- [1] Finite Element Interface to Linear Solvers (FEI). Project home page: http://trilinos.sandia.gov/packages/fei.
- [2] E. Arge, A. Bruaset, H. Langtangen [Eds.]. Modern Software Tools for Scientific Computing. Birkhäuser, 1997.
- [3] K. Banaś. On a modular architecture for finite element systems. I. Sequential codes. Computing and Visualization in Science, 8: 35–47, 2005.
- [4] K. Banaś, K. Michalik. Design and development of an adaptive mesh manipulation module for detailed FEM simulation of flows. [In:] P.M.A. Sloot, G.D. van Albada, J. Dongarra [Eds.], Proceedings of the International Conference on Computational Science, ICCS 2010, University of Amsterdam, The Netherlands, May 31 – June 2, 2010, Procedia Computer Science. Elsevier, 1: 2043–2051, 2010.
- [5] K. Banaś, K. Chłoń, P. Cybułka, K. Michalik, P. Płaszewski, A. Siwek. Adaptive finite element modelling of welding processes. [In:] M. Bubak, J. Kitowski, K. Wiatr [Eds.], eScience on Distributed Computing Infrastructure – Achievements of PLGrid Plus Domain-Specific Services and Tools, Lecture Notes in Computer Science. Springer International Publishing, 8500: 391–406, 2014. http://dx.doi.org/10.1007/978-3-319-10894-0 28.
- [6] B. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, PA, 1994.
- [7] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klofkorn, R. Kornhuber, M. Ohlberger, O. Sander. A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE. Computing, 82(2): 121–138, 2008.
- [8] P. Bastian, C. Engwer, D. Göddeke, O. Iliev, O. Ippisch, M. Ohlberger, S. Turek, J. Fahlke, S. Kaulmann, S. Müthing, D. Ribbrock. EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications. [In:] L. Lopes, J. Zilinskas, A. Costan, R.G. Cascella, G. Kecskemeti, E. Jeannot, M. Cannataro, L. Ricci, S. Benkner, S. Petit, V. Scarano, J. Gracia, S. Hunold, S.L. Scott, S. Lankes, C. Lengauer, J. Carretero, J. Breitbart, M. Alexander [Eds.], Euro-Par 2014: Parallel Processing Workshops – Euro-Par 2014 International Workshops, Porto, Portugal, August 25–26, 2014, Revised Selected Papers, Part II, Lecture Notes in Computer Science, 8806: 530–541. Springer, 2014. http://dx.doi.org/10.1007/978-3-319-14313-2 45.
- [9] D.E. Bernholdt, B.A. Allan, R. Armstrong, F. Bertrand, K. Chiu, T.L. Dahlgren, K. Damevski, W.R. Elwasif, T.G.W. Epperly, M. Govindaraju, D.S. Katz, J.A. Kohl, M. Krishnan, G. Kumfert, J.W. Larson, S. Lefantzi, M.J. Lewis, A.D. Malony, L.C. McInnes, J. Nieplocha, B. Norris, S.G. Parker, J. Ray, S. Shende, T.L. Windus, S. Zhou. A component architecture for high-performance scientific computing. International Journal of High Performance Computing Applications, 20: 163–202, 2006.
- [10] C. Cecka, A.J. Lew, E. Darve. Assembly of finite element methods on graphics processors. International Journal for Numerical Methods in Engineering, 85(5): 640–669, 2011. http://dx.doi.org/10.1002/nme.2989.
- [11] E. Cuthill, J. McKee. Reducing the bandwidth of sparse symmetric matrices. [In:] ACM’69 Proceedings of the 1969 24th National Conference, pp. 157–172, ACM New York, USA, 1969. http://dx.doi.org/10.1145/800195.805928.
- [12] G. De Vahl Davis. Natural convection of air in a square cavity: A bench mark numerical solution. International Journal for Numerical Methods in Fluids, 3(3): 249–264, 1983. http://dx.doi.org/10.1002/fld.1650030305.
- [13] L. Demkowicz. Computing with hp-Adaptive Finite Elements: Volume 1. One and Two Dimensional Elliptic and Maxwell Problems. Taylor & Francis Group, 2006.
- [14] L. Demkowicz, J. Oden, W. Rachowicz, O. Hardy. Toward a universal h-p adaptive finite element strategy, Part 1. Constrained approximation and data structure. Computer Methods in Applied Mechanics and Engineering, 77: 79–112, 1989.
- [15] A. Dziekonski, P. Sypek, A. Lamecki, M. Mrozowski. Generation of large finite-element matrices on multiple graphics processors. International Journal for Numerical Methods in Engineering, 94(2): 204–220, 2013. http://dx.doi.org/10.1002/nme.4452.
- [16] S. Fialko. Iterative methods for solving large-scale problems of structural mechanics using multicore computers. Archives of Civil and Mechanical Engineering (ACME), 14: 190–203, 2014.
- [17] L. Franca, S. Frey. Stabilized finite element methods II: The incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 99: 209–233, 1992.
- [18] Z. Fu, T.J. Lewis, R.M. Kirby, R.T. Whitaker. Architecting the finite element method pipeline for the GPU. Journal of Computational and Applied Mathematics, 257: 195–211, 2014. http://dx.doi.org/10.1016/j.cam.2013.09.001.
- [19] S. Komatitsch, G. Erlebacher, D. Göddeke, D. Michéa. High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster. Journal of Computational Physics, 229(20): 7692–7714, 2010.
- [20] Z. Koza, M. Matyka, S. Szkoda, Ł. Mirosław. Compressed multirow storage format for sparse matrices on graphics processing units. SIAM Journal on Scientific Computing, 36(2): C219–C239, 2014. http://dx.doi.org/10.1137/120900216.
- [21] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A.R. Bishop. A unified sparse matrix data format for efficient general sparse matrix-vector multiplication on modern processors with wide SIMD units. SIAM J. Scientific Computing, 36(5): C401–C423, 2014. http://dx.doi.org/10.1137/130930352.
- [22] H. Langtangen, A. Bruaset, E. Quak [Eds.]. Advances in Software Tools for Scientific Computing. Springer, Berlin/Heidelberg, 2000.
- [23] R. Mackie. Object oriented programming of the finite element method. International Journal for Numerical Methods in Engineering, 35: 425–436, 1992.
- [24] G.R. Markall, A. Slemmer, D.A. Ham, P.H.J. Kelly, C.D. Cantwell, S.J. Sherwin. Finite element assembly strategies on multi-core and many-core architectures. International Journal for Numerical Methods in Fluids, 71(1): 80–97, 2013. http://dx.doi.org/10.1002/fld.3648.
- [25] J.D. McCalpin. Memory bandwidth and machine balance in current high performance computers. IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, pp. 19–25, 1995.
- [26] K. Michalik, K. Banaś, P. Płaszewski, P. Cybułka. ModFEM – a computational framework for parallel adaptive finite element simulations. Computer Methods in Materials Science, 13(1): 3–8, 2013.
- [27] M. Paszynski, D. Pardo, V.M. Calo. Direct solvers performance on h-adapted grids. Computers & Mathematics with Applications, 70(3): 282–295, 2015.
- [28] M. Paszyński, D. Pardo, A. Paszyńska, L. Demkowicz. Out-of-core multi-frontal solver for multi-physics hp adaptive problems. Procedia Computer Science, 4: 1788–1797, 2011.
- [29] P. Płaszewski, K. Banaś. Performance analysis of iterative solvers of linear equations for hp-adaptive finite element method. [In:] V.N. Alexandrov, M. Lees, V.V. Krzhizhanovskaya, J. Dongarra, P.M.A. Sloot [Eds.], Proceedings of the International Conference on Computational Science, ICCS 2013, Barcelona, Spain, 5–7 June, 2013, Procedia Computer Science, 18, 1584–1593. Elsevier, 2013.
- [30] P. Płaszewski, M. Paszyński, K. Banaś. Architecture of iterative solvers for hp-adaptive finite element codes. Computer Assisted Methods in Engineering and Science, 20(1): 43–54, 2013.
- [31] I. Reguly, M. Giles. Finite element algorithms and data structures on graphical processing units. International Journal of Parallel Programming, 43(2): 203–239, 2015. http://dx.doi.org/10.1007/s10766-013-0301-6.
- [32] J.F. Remacle, B. Karamete, M. Shephard. Algorithm Oriented Mesh Database. Report 5, SCOREC, 2000.
- [33] J.F. Remacle, O. Klaas, J. Flaherty, M. Shephard. A parallel algorithm oriented mesh database. Engineering with Computers, 18: 274–284, 2002.
- [34] K.A. Rojek, M. Ciznicki, B. Rosa, P. Kopta, M. Kulczewski, K. Kurowski, Z.P. Piotrowski, L. Szustak, D.K. Wojcik, R. Wyrzykowski. Adaptation of fluid model EULAG to graphics processing unit architecture. Concurrency and Computation: Practice and Experience, 27(4): 937–957, 2015. http://dx.doi.org/10.1002/cpe.3417.
- [35] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston, 1996.
- [36] O. Schenk, K. Gärtner. Solving unsymmetric sparse systems of linear equations with PARDISO. Journal of Future Generation Computer Systems, 20(3): 475–487, 2004.
- [37] O.C. Zienkiewicz, J.Z. Zhu. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. International Journal for Numerical Methods in Engineering, 33(7): 1331–1364, 1992. http://dx.doi.org/10.1002/nme.1620330702.
- [38] T. Zimmermann, Y. Dubois-Pelerin, P. Bomme. Object-oriented finite element programming: I. Governing principles. Computer Methods in Applied Mechanics and Engineering, 98: 291–303, 1992.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-852f4670-b911-4617-9d47-36270136681c